Research@ARL
Network_ Sciences

— Al

Editors-in-Chief / ; ';-'_\‘_ ; AL
. ] Fe - b_; - - —n

o L - f - 1-|.'|___
- L % 7 =
Sl N T
AN =3 =% - e —— .
Ui s
SN} 7 o el =
2 P -.-"‘s" : x " ': ? g .
iy a 2
- .p.-!f

U.S. Army Research Laboratory



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
MAR 2013 2. REPORT TYPE 00-00-2013 to 00-00-2013
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Network Sciences 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
U. S. Army Research L aboratory,Aberdeen Proving Ground,MD,21005 | REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

Research@ARL, March 2013

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 269
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



Editorial Board

Dr. Ananthram Swami Dr. Bruce J. West
Editor-in-Chief Editor-in-Chief

¢ |
Dr. Piotr J. Franaszczuk Dr. Joseph N. Mait
Advisory Board
Dr. Kwong K. Choi Dr. Tomasz R. Letowski Dr. Paul H. Shen
Dr. Brad E. Forch Dr. Joseph N. Mait Dr. Ananthram Swami
Dr. Piotr J. Franaszczuk Dr. James W. McCauley Dr. Bruce J. West
Dr. Shashi P. Karna Dr. Nasser M. Nasrabadi
Dr. Stephen J. Lee Dr. Peter J. Reynolds

Research@ARL can be accessed electronically at www.arl.army.mil/ResearchARL




contents

ResearcheARL

Network Sciences ¢ 2013

IntrodUCONMOYARL. ... 507 JUSSNNNIEIN.. U WO SUN SRRSO 001 NEOEOY SO 2

[ FOTETOTE hsooooy TP S B cooonomnoonoono Booocno B o oo alonoomanoononanconong ona oo cnoonomoonsonocmomonoomanonoonBRInonmEa000onmRa0N00naan0s 3
John Pellegrino, Director (A)

Introduction to ARL Research in NetWOIrK SCIENCES...........cooii it e et e s eesas e e s sesseeeessssseesessseeesesssssesesnnneenannn 4
Bruce J. West, Ananthram Swami, Joseph N. Mait, and Piotr J. Franaszczuk

Physical Sciences
A New Measure of NetWOrk EffiCIENCY...........coooiiiiiiieee et st e e e s s ene e ene e s e st e eneeeneeenee s 13
Nicholas W. Hollingshad, Malgorzata Turalska, Paolo Allegrini, Bruce J. West, and Paolo Grigolini

Optimal Topology Control and Power Allocation for Minimum Energy Consumption in Consensus Networks................ 21
Stefania Sardellitti, Sergio Barbarossa, and Ananthram Swami

Efficient Extraction of Drainage Networks from Massive, Radar-Based Elevation Models
With LEeast COSt PAth SEAICK ..........uueieiiiiiiii ettt e e e e s e e e e e base e e e e eeeeesaa s s b s s s s e e e e eeeseesasssssssnseeesesssssanssnsssnnnnnnes 39
M. Metz, H. Mitasova, and R. S. Harmon

Connectivity of Heterogeneous Wireless NEtWOIKS ......... ..o ittt e e e e e e e s e e e e e e nne e e e neeennnenenns 53
Wei Ren, Qing Zhao, and Ananthram Swami
Life Sciences

Epileptic Seizures from Abnormal Networks: Why Some Seizures Defy Predictability ............cccooceiiiiiinnininniieecee 73
William S. Anderson, Feraz Azhar, Pawel Kudela, Gregory K. Bergey, and Piotr J. Franaszczuk

Evolving Communicative Complexity: Insights from Rodents and Beyond................cccccoriieieiin e 87
Kimberly A. Pollard and Daniel T. Blumstein

Combining the Finite Element Method with Structural Connectome-Based Analysis for Modeling Neurotrauma:

Connectome Neurotrauma IMECRANICS ...........eeiiiiiiiiiiiiiiiireeeieeeeeeeseesssasssreeeeeessaeaa s sssssssaseseeesassaasssssasasaeseesessasasssnnnnsesenesann 99
Reuben H. Kraft, Phillip Justin Mckee, Amy M. Dagro, and Scott T. Grafton
ON ANTOMELIY REIATIONS ... ..ottt et sa e ea e e ea e h e sae e eae e e ae e saeeeaeeeaeesaeeeneeneen e e st e eneeeneeaneesnnennnennnenas 115

Damien West and Bruce J. West

Social Sciences

Distributed Algorithms for Learning and Cognitive Medium Access with Logarithmic Regret.............ccccoviiiriiiiinnnnies 173
Animashree Anandkumar, Nithin Michael, Ao Kevin Tang, and Ananthram Swami
A Survey on Trust Management for Mobile Ad HOC NEIWOIKS ............cooiiiiiiiiieee e et 189

Jin-Hee Cho, Ananthram Swami, and Ing-Ray Chen

Temporal Complexity of the Order Parameter at the Phase Transition ...............coooiieoie e e 213
Malgorzata Turalska, Bruce J. West, and Paolo Grigolini

Information Sciences
Noncoherent Physical-Layer Network Coding with FSK Modulation: Relay Receiver Design Issues............ccccccceeeuennnee 221
Matthew C. Valenti, Don Torrieri, and Terry Ferrett

Transmission of Information Between Complex Systems: 1/ fRESONANCE ...........ccceeeriereerericesienese e sne e 233
Gerardo Aquino, Mauro Bologna, Bruce J. West, and Paolo Grigolini

Robust Control for Mobility and Wireless Communication in Cyber-Physical Systems
LAV L L WAY o] o] [ez= T oY I (TN & {o] o Yo N =T 1o s L 247
Jonathan Fink, Alejandro Ribeiro, and Vijay Kumar

Biographies of ARL Authors




Introduction to ARL

The Army Research Laboratory of the U.S. Army Research, Development and Engineering Command (RDECOM) is the Army’s
corporate laboratory. ARL's research continuum focuses on basic and applied research (6.1 and 6.2) and survivability/lethality
and human factors analysis (6.6). ARL also applies the extensive research and analysis tools developed in its direct mission
program to support ongoing development and acquisition programs in the Army Research, Development and Engineering
Centers (RDECs), Program Executive Offices (PEOs)/Program Manager (PM) Offices, and Industry. ARL has consistently provided
the enabling technologies in many of the Army’s most important weapons systems.

The Soldiers of today and tomorrow depend on us to deliver the scientific discoveries, technological advances, and the analyses
that provide Warfighters with the capabilities to execute full-spectrum operations. ARL has Collaborative Technology Alliances in
Micro Autonomous Systems and Technology, Robotics, Cognition and Neuroergonomics, and Network Science, an International
Technology Alliance, and new Collaborative Research Alliances in Multiscale Multidisciplinary Modeling of Electronic Materials
and Materials in Extreme Dynamic Environments. ARL's diverse assortment of unique facilities and dedicated workforce of
government and private sector partners make up the largest source of world class integrated research and analysis in the Army.
ARL Mission

The mission of ARL is to “Provide the underpinning science, technology, and analysis that enable full-spectrum operations.”

Our Vision
America’s Laboratory for the Army: Many Minds, Many Capabilities, Single Focus on the Soldier

ARL's Organization

*Army Research Office (ARO) - Initiates the scientific and far reaching technological discoveries in extramural organizations:
educational institutions, nonprofit organizations, and private industry.

e Computational and Information Sciences Directorate (CISD) - Scientific research and technology focused on information
processing, network and communication sciences, information assurance, battlespace environments, and advanced computing
that create, exploit, and harvest innovative technologies to enable knowledge superiority for the Warfighter.

*Human Research and Engineering Directorate (HRED) - Scientific research and technology directed toward optimizing Soldier
performance and Soldier-machine interactions to maximize battlefield effectiveness and to ensure that Soldier performance
requirements are adequately considered in technology development and system design.

*Sensors and Electron Devices Directorate (SEDD) - Scientific research and technology in electro-optic smart sensors,
multifunction radio frequency (RF), autonomous sensing, power and energy, and signature management for reconnaissance,
intelligence, surveillance, target acquisition (RISTA), fire control, guidance, fuzing, survivability, mobility, and lethality.

e Survivability/Lethality Analysis Directorate (SLAD) - Integrated survivability and lethality analysis of Army systems and
technologies across the full spectrum of battlefield threats and environments as well as analysis tools, techniques, and
methodologies.

*Vehicle Technology Directorate (VTD) - Scientific research and technology addressing propulsion, transmission, aeromechanics,
structural engineering, and robotics technologies for both air and ground vehicles.

*Weapons and Materials Research Directorate (WMRD) - Scientific research and technology in the areas of weapons, protection,
and materials to enhance the lethality and survivability of the Nation’s ground forces.

ARL Workforce in 2013

¢ 1,971 Civilians - 41 Military

¢ 1,181 Research Performing Workforce

* 578 (49%) hold PhDs

¢ 13 STs / 26 ARL Fellows

ARL's Primary Sites

* Aberdeen Proving Ground, MD
¢ Adelphi Laboratory Center, MD
* White Sands Missile Range, NM
¢ Raleigh-Durham, NC

e Orlando, FL

Unique ARL facilities and modeling capabilities
provide our scientists and engineers access to

Visit ARL's web site at www.arl.army.mil
world-class research centers.

ARL

U.S. ARMY RESEARCH LABORATORY




FOREWORD

Welcome to the second edition of the Research @ARL monograph series. In this
edition, we share ARLs leading edge research in the Network Sciences. Today’s
society is more networked than ever before, and today’s Army reflects that reality.
However, the tools needed to understand the science of our interconnected global
society are not yet fully developed. Many of the networks that touch our everyday
lives, both in the Army and outside, are complex networks. They are often governed
by local interactions and robust self-organization principles, leading to complex
dynamics. And networks do not live in isolation; they are interconnected in surprising
ways. A modern Army cannot function—any more than a modern city can—without the
latticework of transportation systems, utilities, water and food distribution systems,
communication webs, health care delivery organizations, and a myriad of other
interconnected, complex networks. These layers of interpenetrating networks paint
a picture of today’s Army that overarches the traditional physical sciences, social
sciences, life sciences, and information sciences. No one discipline or collection of
disciplines can fully embrace the spectrum of complex problems that the engineered
networking of humanity presents.

ARLs research program in the Network Sciences capitalizes on ARL's expertise in basic and applied research, ranging across
a multitude of science areas, while simultaneously drawing upon the talents of others, nationally and internationally, through
collaborative alliances with industry, laboratories, and academia. We seek to discover the underlying mathematical principles
and universal laws that govern the behavior of co-evolving multi-genre networks. We also seek to understand emergent behavior
in such networks, leading to mechanisms for thwarting or accelerating the emergence of interesting behaviors. Our research
teams are examining the complex neurological networks within the human brain to determine how individuals make decisions
and perform other cognitive tasks under varying levels of stress and uncertainty. The insight gained from this research is
being applied to other biological networks to alleviate the injuries and pathologies encountered by the Warfighter. Exploration
of cooperative behavior of social networks, such as swarms, is a significant research opportunity to control the mobility of
collections of autonomous platforms. In addition to networks in the life and social sciences, ARL teams are examining the
connectedness within and between communications and information networks to determine how their complex structures can
best facilitate the gathering of intelligence and the formation of collective decisions.

As we investigate the fundamental science addressing these critical applications, we search for laws and principles of Network
Science that parallel and compliment those in physics. Tentative principles are presently guiding the development of the
mathematical infrastructure necessary for understanding those aspects of complex networks common to multiple phenomena
appearing in a variety of scientific disciplines.

ARLs long term commitment to encompass interdisciplinary sciences in such diverse areas as vulnerability assessment,
cognitive sciences, human sciences, electronic devices, weapons and materials sciences, information sciences, survivability,
and lethality, uniquely positions our teams to investigate and discover previously unrealized commonalities to provide innovative
solutions. Our discoveries enhance our country’s technological capabilities, our national security, and, ultimately, enable the
invincible Soldier of the future.

Dr. John Pellegrino
Director (A), U.S. Army Research Laboratory




Introduction to ARL Research in Network Sciences

B.J.West, A. Swami, J.N. Mait, and P.J. Franaszczuk

1 Army Research Laboratory: Network Science Program

The objective of the Network Science Program of the U.S. Army Research Laboratory (ARL) is to perform foundational research
on network science (NS) leading to a fundamental understanding of the interplay within and among the physical, social/
cognitive, information, and communication networks. This research is expected to lead to insights on how processes and
parameters in one network affect and are affected by those in other networks. The underlying long-term goal is to optimize
human performance and to greatly enhance speed and precision for complex networked military operations.

We define Network Science as the study of complex systems whose behavior and responses are determined by exchanges
and interactions between subsystems across a possibly dynamic and usually poorly defined set of pathways. The fundamental
components of a network are its structure (nodes and links or pathways) and its dynamics, which together specify the network’s
properties (functions and behaviors).

The Army is embarked upon an information age transformation loosely referred to as Network Centric Warfare (NCW) or
Network Centric Operations (NCO). NCW/NCO seeks to dramatically increase mission effectiveness via robust networking for
information sharing leading to shared situational awareness, improved collaboration and self-synchronization, and enhanced
sustainability and speed of command [1, 2]. Central to this effort is an understanding of the interaction of networks in the
physical, informational, cognitive, and social domains; thus, ARL's NS program directly supports NCW/NCO.

Society, as pointed out in the 2005 National Research Council (NRC) report Network Science [3], is more interconnected
than it has been at any time in world history. A modern city could not function without garbage collection, sewers, electricity,
transportation, water, health care, and food and fuel distribution, and would have a much different form without networks of
education, banking, telephone service, and the Internet. Some of these activities form local physical or social networks within
the city and their forms have been evolving for millennia. Part of that evolution was the development of their interoperability such
that these networks are all interconnected and in one way or another they connect to ever-expanding global networks. These
interconnections can lead to robustly coevolving networks, but under some conditions, can also lead to cascading failures. This
corresponds to the first finding of the NRC report: “Networks enable the necessities and conveniences of modern life.” These
are the engineered networks of humanity, but there are comparable structures in the biosphere and ecosphere involving plant
and animal networks of tremendous variety.

Moreover, our internal world is also an interlacing and interacting collection of networks. The neuronal network carrying the
brain’s signals to the body’s physiological networks is even more complex than the modern city. The bio/eco-networks are
certainly as difficult to understand as the physical/social-networks. This led to another finding in the NRC report: “Social and
biological networks bear important similarities to engineered networks.” Herein we present a number of studies carried out by
ARL scientists in collaboration with the broader scientific community to further our understanding of NS. These studies suggest
how these similarities might be exploited for the development of NS that is of value to society in general and to the United States
Army in particular.

The insights and mathematical characterizations resulting from ARLs NS research will enable us to achieve this underlying
goal, by providing the ability to predict and control the individual and composite behavior of the complex interacting physical,
communications, information, and social/cognitive networks. Network science is one of ARL's strategic technology investment
areas, with a strong program based on the modern research pillars of theory, simulation, emulation, and experimentation. It
encompasses a variety of transdisciplinary basic and applied programs across ARL's core competency areas that include close
collaborations with academic, military, and industrial research partners throughout the US and internationally. These include
ARLs Network Science Collaborative Technology Alliance (CTA), the US-UK Network and Information Sciences International
Technology Alliance (ITA), the Micro Autonomous Systems & Technology CTA, the Cognition & Neuroergonomics CTA, and several
Multidisciplinary University Research Initiatives (MURIs). The Institute for Collaborative Biotechnology is a University Affiliated
Research Center (UARC) that approaches networks from the perspective of biological systems, and ARL's Mobile Network
Modeling Institute (MNMI) is an applied research effort that seeks to further the science by enabling full fidelity at-scale
modeling and simulation of large scale heterogeneous networks, incorporating live assets in the emulation environment. More
information on these programs may be found by navigating ARL's Collaborative Technology and Research Alliances website at
http://www.arl.army.mil/www/default.cfm?page=93.



The taxonomy of the ARL research efforts in NS can take a number of forms, two of which are given here. To set the stage for
the scientific problems, we summarize four grand challenges and identify the Army programs conducting research to address
these challenges. A separate and distinct way of organizing the research is via the network category addressed. The individual
research papers are identified in this latter grouping according to discipline.

2 Grand Challenges

The ARL research effort in NS seeks to make fundamental advances of and contributions to the science so as to enable the a
priori prediction of the behaviors of complex interacting networks in diverse and dynamic environments and an understanding
of the design trade-offs and the impacts of various technologies under a wide variety of dynamic and adverse conditions.
Moreover, it is intended to quantify the impact of network technologies both technically and operationally to make informed
acquisition decisions.

2.1 Underpinning Mathematical Framework: Dynamic Multiple-Scale, Cross-Genre Coupling

Multiple-scale and cross-scale couplings within and across networks are recurrent themes in the study of complex physical,
communication, informational, social, and biological networks. Existing formalisms address one, two, or a continuum of scales,
but the multi-node problem remains unsolved. Existing mathematical approaches offer insights into the quantitative aspects
of complex phenomena with multiple scales (no characteristic scale) in stationary and near equilibrium networks, but what
is needed now is a way to describe the dynamics of such complex phenomena/networks when the underlying processes
are neither stationary nor near equilibrium [4]. Network characteristics cannot be deduced from the properties of individual
components; they emerge during the formation and growth of the network. Consequently a mathematical framework is needed
to characterize the interactions between the dynamic network components, the temporal evolution of the network, and its
response to external stimuli, including attacks. The framework must take into account heterogeneity, non-stationarity, even
non-ergodicity, as well as conflicting constraints and objectives.

One way to characterize the interaction of networks is by understanding how information is propagated within and across
complex adaptive networks — how information, in a general sense, flows across networks so as to maximize utility (e.g., as
perceived by a decision maker) under constraints, such as timeliness and resource usage. Tools from statistical physics such
as continuum percolation theory, stochastic geometry, and modern statistics are used to deal with non-Markovian behaviors,
heavy-tailed phenomena, and the mutual interactions between networks. To cope with multiple potentially conflicting constraints
and objectives, a generalized control theory of locally reacting multiple agents needs to be developed, perhaps through the
mimicking of self-repair and replication identified in biological networks.

2.2 Human Metrics in Complex Networks

A critical element in realizing the vision of Network-Centric Operations (NCO) is that the distributed decision making process
must take into account the human dimension in its elements including decision-makers, data and information sources,
processed information, communication network elements, etc. The measure or metric of the human dimension must be
derived in a distributed fashion; in time-critical and stressful situations; in environments where node capture and subversion
are likely; where the underlying communications network is resource-constrained, mobile, and dynamic; and where decision-
makers’ reliance on and compliance with an information network are subject to numerous internal and external influences.
Key barriers include the limited understanding of network-of-networks, composability of heterogeneous networks, and a limited
understanding of how the context (e.g., trust and risk) is analytically derived from variously distributed sources of evidence.

A key aspect of a common quantitative framework is an approach for representing uncertainty (probability theory, possibility
theory, evidence theory, subjective logic, argumentation theory, or other). Development of metrics is a key issue: metrics that
take into account the value of information and human intentions are important in information and C2 networks. Relations
between and among these metrics need to be clarified along with the development of a mathematics of network classes. A
specific example is the trust metric. The scientific challenge is to understand the different definitions and dimensions of trust,
for example, in socio-cognitive and communications networks, and from that understanding develop a composite trust metric.
Rather than merely treating the interaction via a simple interface or utility function offered by one network to another, network
interactions must be taken into account, as well as the context- and time-varying nature of the trust metric components.
Encapsulation of these sub-components as a scalar metric is challenging due to the conflicting nature of the components and
the non-convexity of useful metrics. To quantify human performance in networks, measurable features of data from different
networks need to be identified to enable the modeling of network complexity and the interactions between different networks.
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2.3 Abstracting Common Concepts Across Fields

A set of common concepts for network science that is defined consistently across the various scientific disciplines does not
exist. There are discipline-specific nomenclatures that have been developed for specialized needs, but the equivalence of
these terminologies for a discipline-independent characterization of networks has not been established. The mathematical
formulation of these empirically-based concepts will provide a nascent language for network science.

Mathematical rigor across the component disciplines is promoted by focusing on ubiquitous aspects of the underlying complex
networks, such as the appearance of non-stationary, non-ergodic, and non-renewal statistical processes. These properties
are manifest through the empirical inverse power-law (IPL) probability density functions (pdf) that appear in physical, social,
biological, economic, and physiological networks. Tools from non-equilibrium statistical physics and non-equilibrium information
theory are used as well. To understand and facilitate network agility and adaptability, new techniques, methodologies, and
analyses from a multi-disciplinary approach have been and will continue to be combined with the application of powerful
modeling and simulation to explore the dynamics of networks. High-fidelity simulation, emulation, and experiments for large-
scale dynamic networks — based on complexity-performance trades and incorporation of live assets in an emulation environment
— will provide us the ability to understand the complicated interactions between large-scale heterogeneous networks.

3 Taxonomy by Discipline

NS is unlike traditional scientific disciplines in that it identifies a particular structure, that of a network, as the basis for the
science. Since structural webbing exists within and among all scientific disciplines, the over-arching goal of NS is to develop
a body of principles that will enable modeling, design, analysis, prediction, and control of the behavior of the underlying
phenomena in the physical (sensors, wireless web), information (communications, knowledge management), social (people,
organizations, cultures), and cognitive (perceptions, beliefs, decision-making) sciences, to name only a few. The emphasis is
not restricted to the network structure within a given discipline, but is focused on networked phenomena that encompass many
disciplines as well as how such complex networks interact with one another. As a nascent science, the underlying principles
are still missing, so the grand challenge for this effort is to create and organize the fundamental knowledge upon which to
base these principles. Moreover, NS is intended to bridge the knowledge gap between disciplines and breakdown the artificial
barriers that have been created between disciplines.

We have partitioned the scientific papers into four sections, each corresponding to a different category of disciplines: the
physical sciences, the life sciences, the social sciences and the information sciences. This partitioning is intended to direct the
reader to that area of investigation with which s/he is most comfortable. On the other hand, this opening narrative is intended
to suggest that NS is more than just a thematic thread that weaves its way through each of the sections; it is intended as an
over-arching perspective that encompasses the traditional disciplines. However, in the rush to discuss the tangible aspects of
science, the fieldable products of technology, and the immediate needs of the Army, the network view so crucial to the scientific
enterprise is often overlooked. It is emphasized here because, like the scientific barrier of complexity, it often represents the
problem we would like to solve, but do not know how.

3.1 Physical Sciences

Physics has been the paradigm of science since the time of Newton. Consequently, when investigators wanted to emphasize
the use of quantitative methods in their studies, they appended the suffix physics. In the 19th century this strategy resulted in
sociology giving rise to sociophysics, psychology spawning psychophysics and biology producing biophysics. Of course, there
were also a number of physicists speculating on the use of their techniques to understand non-physical phenomena. As a
result, new disciplines evolved at the boundary between previously established disciplines. This way of extending the frontiers of
disciplinary science proceeded into the 20th century, producing biochemistry, bioengineering, social engineering, econophysics,
and so on. But it was the successes of the mathematical methods of physics that attracted the most attention.

The existence of an empirical law or principle from which the dynamics of a physical system can be determined appears almost
mystical when trying to understand cognition or decision making. The 19th century physicists and applied mathematicians were
able to take the conservation of energy and from that statement determine the laws of motion for any mechanical system. Such
variational calculations in the hands of more practical people subsequently produced control theory and the dynamics of non-
mechanical systems consistent with a set of imposed constraints.

Sardellitti and Barbarossa of Sapienza-University of Rome collaborated with Swami of ARL on, “Optimal Topology Control
and Power Allocation for Minimum Energy Consumption in Consensus Networks” (page 21), to design a network topology
that optimizes the spread of information, exemplified by the computation of globally relevant statistics by exploiting only local



communication among the sensors in a wireless network. As in all design problems, there is a function to be carried out by the
network while simultaneously satisfying a given constraint such as maximizing efficiency or minimizing energy consumption. Is
the optimal topology sparse or dense? The research of Sardellitti et al. was concerned with minimizing energy use; the paper
of Hollingshad et al., discussed later, was concerned with network efficiency, “A New Measure of Network Efficiency” (page
13). Sardellitti et al. developed a method for optimizing the network topology and the power allocation across every link in
order to minimize the energy necessary to achieve consensus across the sensor network. Since the topology is the result of
optimization, this is a non-deterministic polynomial time (NP) combinatorial problem which the authors circumvent by means
of a clever relaxation procedure.

Another approach to handling network complexity is by recognizing that the elements comprising a fighting force are interlinked
to such a high degree that changing a single component influences and modifies the response of every other component in
the network. Furthermore, each element in the network is itself a network and must be treated as such. This observation does
not in itself contribute anything new to the discussion. It has been known since the first recorded wars that small changes in
tactics and strategy can lead to overwhelming changes in outcome. This recognition has sometimes led to inaction, because the
outcome of any action is unpredictable. What is new about the networking concept is the attempt to formalize the interactions
so as to make the response to change predictable. New methods, such as nonlinear dynamics theory and chaos, have enabled
us to determine the boundaries of predictability in apparently random dynamic processes, so we can realistically assess what
we can and cannot know about a particular network. But it all goes back to the individual Soldier, situational awareness, and
leadership involving the synthesis of information in real time.

The research group consisting of Hollingshad, Turalska, and Grigolini at the University of North Texas; Allegrini from the University
of Pisa; and West from ARL collaborated on constructing, “A New Measure of Network Efficiency” (page 13). They address the
dynamical origin of the scale-free probability distribution function (pdf) and, consequently, the related issue of network topology.
Here again, the local interactions are found to determine the global properties of the network, using a nonlinear mathematical
model with nearest neighbor interactions on a two-dimensional lattice. The network dynamics undergo a phase transition at
a critical value of the control parameter, thereby inducing long-range correlations among the members of the network. The
researchers determine that the distribution of links favoring long-range connections increases the efficiency of information
transfer, which becomes optimally efficient when the IPL index for the degree pdf is one. They attribute this to the role of network
leadership being transient, with the rank differences between the most-linked and least-linked nodes being temporary and over
time the highest rank is shared by all members of the network. The full implications of this insight remain to be explored.

A fundamental difficulty with the concept of networking networks, such as nature has done within the human body or as applied
to material structures, is related to the multiple scale and multi-physics requirements, as seen, for example, in electronic
networks. If all physics were known and we had the necessary mathematical tools, we could model the ultimate performance
of any physical network given the atomic composition of the parts. Quantum physics would enable atomic and nano-scale
properties to be captured and parameterized yielding the electronic, thermal, and mechanical attributes of materials. From this
ability to effectively couple across scales, we could eventually determine the capabilities and performance of multifunctional
networks interrelating sensor, information, and communication capabilities. We could do this without fabricating network
components, and we could achieve optimization at a level of sophistication that is beyond our wildest dreams using current
technology and network development. On the other hand, it seems unreasonable to model every atom and electron in a physical
network, yet the atomic level properties affect the composite performance and, therefore, cannot be neglected. At criticality,
the smallest fluctuations are often amplified to the macroscopic level and, therefore, contain information on the nature of the
large-scale network.

Ren and Zhao of the University of California, Davis have collaborated with Swami of ARL on, “Connectivity of Heterogeneous
Wireless Networks” (page 53). This research results in a better understanding of the spatial connectivity of one heterogeneous
network (secondary) embedded within another (primary); the heterogeneity is modeled using Poisson statistics for the ad hoc
network. The analysis is done using percolation theory, which was initiated in statistical physics and has since developed into
its own branch of mathematics. Percolation theory is a natural method for answering the question of whether the secondary
network can be connected, i.e., when can a message be transmitted across the entire network without disruption? The
researchers establish that when the density of the primary transmitters is beyond a certain level, there are simply not enough
spectrum opportunities for any secondary network to be connected. The design parameters are the interference tolerances
of the primary and secondary Poisson distributed networks and are used to design the optimal transmission power of the
secondary network based on that of the primary. Consequently, the connectivity of large-scale ad hoc heterogeneous wireless
networks are expressed in terms of the occurrence of the percolation phenomenon. It turns out that matching the interference
ranges of the primary and secondary networks maximizes the tolerance of the secondary network to the primary traffic load.
Since the tolerable interference range is an indicator of the receiver’s sophistication, this can be interpreted as an instance of
the complexity matching principle discussed in, “Transmission of Information Between Complex Systems: |/f Resonance” (page
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233), and “Temporal Complexity of the Order Parameter at the Phase Transition” (page 213 ).

A systematic procedure based on multiple models at different scales with representations at adjacent scales linked to each
other by defined parameterized interfaces that can be calibrated to measurement is one reasonable approach to multi-scale
modeling. This is done today through a combination of deterministic and stochastic modeling, where the smaller scales give rise
to statistical uncertainty at the larger scales. Thus multi-scale modeling involves multiple organizations and disciplines leading
to multiple, seemingly incompatible approaches. One school of thought believes it essential that an object-oriented approach
be followed, meaning in this context that there are well defined interfaces to models capturing a particular scale and that the
various scales are captured, most likely, by stand-alone programs. This multi-scale modeling is a grand scientific/engineering
challenge for Army research.

Metz at the University of Ulm; Mitasova at North Carolina State University; and Harmon at ARL collaborated on, “Efficient
Extraction of Drainage Networks from Massive, Radar-Based Elevation Models with Least Cost Path Search” (page 39). They
use a least-cost drainage path (LCP) search methodology to significantly improve the accuracy of stream mapping, especially in
remote, hard to reach regions and those that can be mapped with massive data sets. The LCP search methods were designed
to find the shortest or fastest route from a starting point to a given destination. The success in extracting reliable drainage
networks from massive radar-based data sets indicates that nature must optimize a cost function over geophysical time scales
in direct analogy to the variation in total energy determining the dynamics of mechanical systems. Here the cost is interpreted
in terms of local elevation and the least-cost path is minimal elevation contour.

3.2 Life Sciences

Complex networks in the life sciences generate patterns that have been summarized in a number of empirical relations. In
physics we have Ohm'’s law, the perfect gas law, and other empirical relations among the variables describing the physical
process. These “laws” are, of course, phenomenological rules developed to summarize what has been observed experimentally
and that were eventually derived using fundamental theory. In more complex living networks, equally simple rules have been
uncovered that typically relate a particular function to the size of an organism, as first observed in biology some two hundred
years ago. The first such expression related the mass of an animal’s brain to its total body mass, using mass as a measure of
size and giving rise to the nomenclature of allometry relation (AR). Allometry, literally meaning by a different measure, has been
defined as the study of body size and its consequences both within a given organism and between species in a given taxon.

The history of ARs is presented by West at Renesselaer Polytechnique Institute and West at ARL, who critiqued the various
attempts to construct the theory underlying the scaling observed in ARs in, “On Allometry Relations” (page 115). ARs are
critically important because they set the boundary conditions that network models must satisfy in order to be compatible with
existing data. For example, the fractal network nutrient transport model used to successfully derive the metabolic AR is one of
the network applications reviewed.

Another emerging application of network theory is in analyzing interactions and relationships in groups of animals and/or
humans. The network science methodology allows for better understanding of the complexity of interactions and communications
between individuals in groups. The review by Pollard, formerly at the University of California, Los Angeles and now with ARL,
and Blumstein at ARL, “Evolving Communicative Complexity: Insights from Rodents and Beyond” (page 87), discusses the
relationship between social interactions and communication patterns, and how focused studies of communicative complexity
can better untangle the underlying evolutionary relationships. The functional relationship between attributes of social complexity
and attributes of communicative complexity allow for a better understanding of how socialization and communication evolve.

The importance of interactions in neural networks for understanding of the operation of the brain has been recognized for a
long time. However, only recently have advances in theoretical, experimental, and computational approaches to the study of
neural networks begun to reveal fundamental principles of brain structure and function. There is emerging consensus among
neuroscientists that traditional approaches concentrating on identifying brain structures responsible for specific functions and
behavior need to be expanded to include investigations of interactions between these structures. New brain imaging techniques
allow for more precise identification of neural tracts connecting different regions of the brain, providing information necessary
for creation of the structural connectome network of an individual brain. This allows for analyzing and interpreting characteristic
features in different individuals as well as identifying abnormalities caused by neurotrauma. The article by Kraft, Mckee, and
Dagro at ARL in collaboration with Grafton at the University of California, Santa Barbara, “Combining the Finite Element Method
with Structural Connectome-Based Analysis for Modeling Neurotrauma: Connectome Neurotrauma Mechanics” (page 99),
presents a novel approach to analysis and interpretation of structural connectome obtained from MRI images by constructing a
finite element model (FEM) informed by experimental data at a cellular level. This approach integrates brain injury biomechanics
and graph theoretical analysis of neuronal connections to form a computational model capturing spatiotemporal characteristics



of trauma. Time evolving simulations of the trauma investigated in this study show how brain network measures of global
and local efficiency are degrading in time after trauma. This approach provides a basis for quantitative analysis tools for
interpretation of neuroimaging data. Computational models based on theoretical analysis of neural network connections could
help inform subsequent analysis of functional networks.

Neural network models based on neurophysiological properties of neurons provide insight into functional relationships between
different brain structures. In recent years, due to increased computational capabilities, it has become possible to model larger
networks composed of more realistic neurons. This allows for more realistic simulations of normal and/or pathological brain
function, which can be directly compared with experimental or even clinical measurements. The article by Anderson, Azhar,
Kudela, and Bergey at Johns Hopkins University in collaboration with Franaszczuk at ARL, “Epileptic Seizures from Abnormal
Networks: Why Some Seizures Defy Predictability” (page 73), illustrates how this modeling approach can provide some insights
into observed but difficult to interpret phenomena within the human brain. Epileptic seizures are the pathological activity of
the brain disrupting the normal activity of an afflicted subject. While a seizure usually lasts only for a relatively short period
of time (1-2 minutes), its unpredictability causes significant disruption in the life of the subject and may even cause serious
injury due to associated loss of consciousness and body control. There is limited opportunity to record data associated with
epileptic seizures. Even during hospitalization, patients may have as few as one or two seizures during an entire week. The
computationally realistic modeling allows for investigation of multiple simulated seizures with full control of critical parameters.
In Anderson et al., the authors created a computational model of the cortex consisting of more than 60,000 spiking neurons
of several types based on histological data. Analysis of simulations of neuronal activity in this model suggest that, in the region
of the cortex, with abnormal connectivity analogous to seizure focus in the human brain, it is possible to initiate seizure activity
with random fluctuations of input from the surrounding cortical regions. This mechanism helps explain the difficulty in predicting
partial seizures in some patients and suggests that intervention not only in the seizure focus area, but also in surrounding
areas, may be necessary to prevent seizures from occurring.

The continuing research at ARL is directed toward combining the structural modeling of brain networks, “Combining the Finite
Element Method with Structural Connectome-Based Analysis for Modeling Neurotrauma: Connectome Neurotrauma Mechanics”
(page 99), with neurophysiological models similar to those presented in “Epileptic Seizures from Abnormal Networks: Why Some
Seizures Defy Predictability” (page 73) to create a more complete model of brain neural networks.

The diverse applications of network-based or inspired studies in life sciences presented here show that the network sciences
concepts and methodology provide a useful conceptual platform for description and analysis of various phenomena and
processes. However, we are in the early stages of applying NS concepts to the various life sciences. Development of more
specific mathematical and computational tools is required, but the future applications are limitless.

3.3 Social Sciences

In tactical networks, distributed decision making should take into account trust in the elements: the sources of information, the
processors of information, the elements of the communications network (both radio and other) across which the information
is transmitted, etc. This trust must often be derived under time-critical conditions, and in a distributed way. It must account for
the uncertain provenance of the data, including the fact that information sources and relays in a tactical network are subject
to subversion. Trust is a critical element of networked interactions, including interactions between humans and agents, that
may be direct or computer-mediated. Trust and reputation are becoming increasingly important due to the explosive growth
in electronically mediated social interactions, often with sometimes correspondingly weakened social control. Trust is a multi-
faceted concept and depends upon the context, the trustor, the environment, the infrastructure, and the mediating agents or
relays. Trust is a critical element of modeling team, group, squad, and company behaviors. It must be taken into account in
promoting group cohesiveness and effective problem-solving, and it must be adequately modeled in quantifying the tension and
trade-off between individual utility and group welfare. Technology can enhance as well as weaken trust relationships. Currently
used models of trust do not adequately capture critical elements of human trust (such as lack of transitivity, symmetry, and
reciprocity, which calls for novel mathematical tools). Managing trust in such an environment is challenging. Cho and Swami
from ARL collaborated with Chen from Virginia Tech on the paper, “A Survey of Trust Management in Mobile Ad Hoc Networks”
(page 189), which addresses some of these challenges. It discusses the concepts and properties of trust pertinent to the
constituent elements of a tactical network and proposes composite trust metrics that take into account the interaction between
the constituent networks, the resource constraints, and the mission goals. This comprehensive survey discusses the differences
between trust and trustworthiness, trust and risk, and trust management schemes.

How can one maximize rewards in an unknown environment? Learning is clearly a crucial element here. There are two important
performance criteria to assess the efficacy of learning: consistency and regret bounds. A learning algorithm is consistent if the
learned estimates asymptotically converge (in some sense) to the true values. Regret is a measure of the speed of convergence,
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the time-averaged loss in performance compared with that obtained by a genie. Anandkumar from the University of California,
Irvine, and Michael and Tang from Cornell University collaborated with Swami from ARL on aspects of this problem in the paper,
“Distributed Algorithms for Learning and Cognitive Medium Access with Logarithmic Regret” (page 173). The scenario they
considered is related to the problem studied in “Connectivity of Heterogeneous Wireless Networks” (page 53). They consider the
problem of so-called secondary users learning the unknown rewards (perhaps rates) obtained by accessing a set of channels.
They consider a distributed framework where there is no information exchange or prior agreement among the secondary users.
This introduces additional challenges: First, one can expect loss of performance due to collisions among users. Second, there
is competition since all the secondary users are vying to access channels with the highest rewards. Using the theory of multi-
armed bandits, they analyze the trade-off between exploration and exploitation and between cooperation and competition. They
propose an order optimal distributed learning and access policy that minimizes the regret. An important notion here is that
one must learn from mistakes (collisions and sensing that may be imperfect) and that one can never stop learning (one must
continue to explore).

Cooperative interactions can lead to phase transitions and the emergence of spatial and network complexity in many systems.
The Ising model has been used to model phase transitions in a variety of phenomena, including ferromagnetism, biological
and neurophysiological processes, the flocking of birds, econophysics, etc. But the temporal complexity of such networks had
not been explored until recently. Turalska and Grigolini from the University of North Texas collaborated with West of ARL on
the paper, “Temporal Complexity of the Order Parameter at the Phase Transition” (page 213), which explores the temporal
complexity issue. They study a decision making model in which the time intervals between significant events has a power-law
distribution, which they show is equivalent to a two-dimensional Ising model. The underlying process is a renewal process,
but it is non-stationary and exhibits long-term correlations. Thus the fundamental property of ergodicity no longer holds, and
new mathematical tools are required to analyze these non-Poisson renewal processes. The researchers establish that phase
transition leads to temporal complexity as manifested by non-stationary and non-ergodic fluctuations. They argue that this
is a basis for complexity matching, a notion elaborated on in, “Transmission of Information Between Complex Systems: 1/f
Resonance” (page 233). The pair of papers, “Temporal Complexity of the Order Parameter at the Phase Transition” (page 213)
and “Transmission of Information Between Complex Systems: |/f Resonance” (page 233) indicate that information can be
transferred between networks via extremely weak coupling, provided that the complexity of the two networks is matched (in
the sense that a form of resonance exists). The concepts of complexity management and complexity matching are likely to find
wide applicability in NS.

3.4 Information Sciences

In the social and life sciences, network discovery has led to increased understanding of how the brain works and how
information propagates in communities of people. In the information sciences, one wishes to create a physical network that
enables communication between entities, either person-to-person, person-to-machine, or machine-to-machine. Design of the
physical network must account for the manner and the environment in which the network will be used.

In most non-military situations, the backbone of this network is fixed, for example, through cell towers. Senders and receivers
are tethered to the backbone, that is, fixed spatially and hard-wired, or untethered, physically mobile, and wirelessly connected.
However, in the environments in which the military operates, designers cannot expect a wireless infrastructure to be available for
use. Thus, military units must be capable of establishing and maintaining their own network, which is a challenge during mobile
operations. It is even more of a challenge when nodes on the network are small, autonomously mobile platforms operating on
city streets and inside buildings, where floor plans and building materials affect the viability of links between nodes.

The use of multiple autonomous platforms is inspired by bionetworks in nature such as insect swarms. Although each single
entity in a swarm has limited intelligence, the swarm appears to behave with intent when the entities function in concert.
Consider the behavior of social insects, such as bees and ants. Fish and birds are other examples of animals whose collective
behavior belies their limited intelligence. Although this analogy is intellectually appealing, differences exist between bionetworks
and networks of autonomous mobile platforms that make it difficult to implement. Bionetworks, for example, swarm for survival,
either to seek food or provide protection. In our grandest vision, swarms of autonomous platforms will exhibit complex behavior,
such as intelligence or sentience through “situational awareness.” Further, communication within animal swarms occurs
through proximity, e.g., ants touching antennae or following a chemical trail, line-of-sight vision, or sound. Put simply, biological
swarms communicate simple messages primitively to perform primitive behaviors, whereas our vision of autonomous platforms
requires complex messaging to achieve complex behaviors.

Given the present state of technology, a better analogy may be a shepherd herding sheep using a sheep dog. That is, a single
intelligent entity controls a layered hierarchical network wherein each layer contains more entities of lesser intelligence than
the layer above it. Whether a swarm or a pack is the better analogy, in any case, researchers have only scratched the surface
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of issues concerned with designing a mobile network created by a collective of autonomous platforms. Controlling the mobility
of a pack of autonomous platforms and communicating within it remain unsolved problems.

How platforms move to achieve their mission, for example, generating the floor plan of a building previously unexplored by US
units, yet maintain connectivity is the focus of the paper, “Robust Control for Mobility and Wireless Communication in Cyber-
Physical Systems with Application to Robot Teams,” by ARL researcher Fink and colleagues Riberio and Kumar at the University
of Pennsylvania. The key element of the paper, “Robust Control and Mobility and Wireless Communication in Cyber-Physical
Systems With Application to Robot Teams” (page 247), is the authors’ statement that “successful deployment of an autonomous
team of robots requires joint cyber-physical controllers that determine (physical) trajectories for the robots while ensuring
(cyber) availability of communication resources.” The authors’ approach to solving this problem is to consider communication
parameters (bandwidth, attenuation, noise) as virtual obstacles that restrict platform movement. However, in an iterative
control cycle, after platforms move, the network readjusts communications parameters to provide reliable communication (e.g.,
establishes new links, removes old ones, increases transmitted power, or reduces transmission bandwidth).

The basis for control is minimizing a potential function subject to the constraint that data transmission in every established link
is above some threshold data rate. The strength of this approach is its global perspective of all links. Previous methods consider
mobility from the perspective of local links only. Simulations and experiments with five mobile ground platforms validate the
viability of this approach.

Analogies to nature inform the design of these experiments. In addition, they provide a benchmark against which one can
measure performance. However, the experiments provide a perspective for reinterpreting and understanding nature. Does
the collection of individual movement and communication minimize a global potential? If so, what potential? The total energy
expended by the network to achieve goal? How does the mode of communication impact an individual’s movement if the
communication is non-line-of-sight versus line-of-sight? The answers to these questions fall back into the realm of network
science theory.

Designers of the physical networks that enable the transfer of electronic information need to consider means for simple, rapid,
and robust data transfer. In applications where the network is stable and network operators have considerable opportunity to
monitor and control the network, for example, commercial networks, message traffic can be handled sequentially. However, in
complex, less stable, environments, parallel transmission of messages provides more robust operation. In this case, messages
between two channels are transmitted contemporaneously to a relay. The relay combines the messages and retransmits the
same composite message to both channels. Since each channel knows the signal they transmitted, it is a simple matter for
them to extract the unknown message from the other channel.

However, parallel messaging dictates that messages between channels must arrive within certain time blocks, which requires
timing control to minimize transmission delays. As the likelihood of large delays increases, the likelihood of missed messages
also increases. Although coherent detection, in which all channels operate on the same time base, minimizes timing delays,
it requires precise control of phase. Such control is unlikely in unstable environments. In these situations, designers trade the
precision of coherent detection for the simplicity of non-coherent detection, which does not require a frequency or phase base.
In their implementation of a non-coherent system, Valenti and Ferrett of West Virginia University and Torrieri of ARL, “Non-
coherent Physical-Layer Network Coding with FSL Modulation: Relay Receiver Design Issues” (page 221), use frequency shift
keying (FSK) to encode signals. In FSK, the network needs to detect only changes in frequency, not measure absolute frequency,
to demodulate signals. Because the encoding does not require a reference frequency, it reduces network requirements on
frequency control and on power control.

In this paper, Valenti, Torrieri and Ferrett present the theory, design, and simulated operation of FSK for non-coherent physical-
layer network coding. They show that the encoding provides high throughput with low energy efficiency, which is typical of non-
coherent systems. To overcome power losses, they employ low rate turbo codes. The authors show that, for the same energy
efficiency, their digital network coding (DNC) approach achieves a higher throughput rate in comparison to more traditional
link-layer network coding (LNC). In one example, the authors show a one-third rate increase. That is, four messages can be sent
using the authors’ approach for every three messages transmitted using LNC.

Aquino of the Imperial College London, Bologna of the Instituo de Alta Investigacion Chile, Grigolini of the University of North
Texas, and West of ARL investigated the transport of information between two complex networks to determine the conditions
under which the information transport is maximized in, “Transmission of Information Between Complex Systems: |/f Resonance”
(page 233). If network theory is ever to become Network Science, there must exist general principles that transcend the level of
disciplinary mechanisms and that remain valid across the physical, biological, and social phenomena described above. In this
paper, Aquino et al. use arguments from non-equilibrium statistical physics to make the case that if the complexity of a network
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can be quantified, then the information transferred is maximized through the matching of the complexity of the interacting
networks.

The complexity of networks, from avalanches of neuronal firings within the human brain to the blinking times in colloidal
quantum dot fluorescence, is manifest in IPL distributions. The level of complexity of these networks is quantified by the value
of the IPL index. Of particular importance is the manner in which information is shuttled back and forth between such networks
and whether or not there exists a general principle that guides the flow of information. The mathematician Norbert Wiener
speculated that such a principle existed for information-dominated processes. A half century later, Aquino et al. in, “Transmission
of Information Between Complex Systems: |/f Resonance” (page 233), proved Wiener’s conjecture to be true by establishing
the Principle of Complexity Management in which information transport is mitigated by the relative values of the networks’ IPL
indices. They establish the principle by generalizing the fluctuation-dissipation theorem from non-equilibrium statistical physics
to non-ergodic processes. In this way, it is possible for a network with lesser energy, but greater information, to organize a
network with greater energy, but lesser information; this is an information-dominated process.

On one hand, a speaker who delivers a lecture standing motionless in front of an audience, talking in a monotone, transfers
little or no information. The group very quickly drifts off and stops listening almost independently of the content of the lecture.
On the other hand, another speaker with a modulated voice, striding back and forth across the front the room while gesturing
dramatically, can hold the audience’s attention. The complexity of the presentation matches that of the typical cognitive activity
of the brain and information finds its way into the consciousness of the audience member. The success of the second speaker,
as well as a myriad of other social and psychological phenomena, are explained by the Principle of Complexity Management and
the relative complexity of the two interacting networks.

The following collection of recently published journal articles is a select sample of the broad spectrum of ARL's network science
research investigating physical, social/cognitive, information, and communication networks, and their complex interactions.
They represent foundational knowledge that will enable optimized human performance and enhanced speed and precision in
complex networked environments.
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principle of network maximal efficiency.
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1. Introduction

The work of Albert and Barabasi (AB) [1] prompted interest in scale-free networks, namely networks with the inverse
power law distribution of links

1
plk) o< 25 (1)

with k denoting the number of links per node. The AB model assumed the preferential attachment of the Yule process and
gave rise to the power-law index v = 3. The ubiquity of these networks has led to the research into the dynamical origin
of the scale-free property. Fraiman et al. [2] has recently studied the two-dimensional Ising model at criticality and using
a suitable threshold p™ established a link between the nodes with a dynamical correlation exceeding that threshold. The
interesting result of that procedure was the emergence of the scale-free distribution density of Eq. (1) with a power index
v that, with the proper choice of average connectivity (k), gives values close to v = 2 [3]. It is remarkable that the same
procedure, applied to the brain, yields results very close to those afforded by the Ising model [2].

Like the work of Ref. [2], we begin with a regular two-dimensional network, but then take an entirely different approach.
Rather than using the Ising model, we adopt the Decision Making (DM) model of Refs. [4,5] for the creation of the dynamically
induced network. The key result is that while we also find the emergence of a scale-free network at criticality, our network
has an exponent v close to 1.
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This finding suggests that the cooperative interaction between the units in the network generated from the DM model
should make the network very efficient. However, we find herein that the conventional measures of network efficiency [6]
are relatively insensitive to v < 2. The second result of this paper is a new measure of network efficiency, the perception
length, that overcomes this limitation, and shows that network efficiency increases as v approaches 1.

The outline of this paper is as follows. We devote Section 2 to proving the dynamical emergence of the scale-free network
with v = 1. Section 3 shows that v approaching 1 maximizes the perception length while realizing a statistical condition
equivalent to the dynamically generated network. We devote Section 4 to concluding remarks.

2. Dynamically induced scale-free network with v = 1

The question of whether the network emerging from dynamical correlations is scale-free is not trivial. For this paper, we
adopt the Decision Making (DM) model of Refs. [4,5]. Although the DM model yields a phase transition very similar to that
of the conventional Ising model [7], the DM model does not have a Hamiltonian foundation. Furthermore, while the Ising
model rests on the action of a thermal bath at a finite temperature, and the single spins in isolation and with no thermal
driving would be dynamically frozen, the units of the DM model, in isolation, are driven by Poisson dynamics. This difference
may lead to a dynamically created scale-free network different from that of Ref. [2].

The DM model considers N discrete variables located at the nodes of a two-dimensional square lattice. Each unit s; is a
stochastic oscillator and can be found in either of two states, “yes” (+1) or “no” (—1). The cooperation among the units is
realized by setting the transition rates between two states to the time-dependent form:
My (£)—M1q(t)

M

g (t) = ge© (2)

and

My (t)—M1 (t
g () = ge ¥ 3)
where M denotes the total number of nearest neighbors, which in the case of a two-dimensional lattice results in M = 4.
M;(t) and M, (t) are the nearest neighbors who are making the decision “yes” and “no”, respectively. The single unit in
isolation, K = 0, fluctuates between “yes” and “no”, with the rate g. When coupling constant K > 0, a unit in the state “yes”
(“no”) makes a transition to the state “no” (“yes”) faster or slower according to whether M, > M; (M; > M;) or My < M
(M1 < M,), respectively. The quantity K¢ is the critical value of the control parameter K, at which point a phase-transition
to a global majority state occurs. It can be shown that for a lattice of infinite size Kc = 2 In(1 + +/2) ~ 1.7627.

All simulations are implemented on a lattice of N = 100 x 100 nodes with periodic boundary conditions. In a single time
step, a run over the entire lattice is performed and for every node an appropriate transition rate (g, or g1) is calculated
according to which a node is given possibility to change its state. Under those conditions, setting parameter g = 0.01, the
phase transition to the global majority case occurs at Kc ~ 1.70. To study the dynamically induced network topology, we
considered the DM model with this critical value of coupling constant. After an initial 10° time steps, we record 2000 lattice
configurations, obtaining the dynamics of each node {s;(t)}. In the next step, we evaluate the linear correlation coefficient
between the i-th and the j-th node:

(s:(D5(D) — (5:(0) (5(0))
80 — 5012, [150) = (50)2

where (- - -) stands for the time average. Nodes i and j of the dynamically induced network are connected by a link when the
correlation between nodes i and j of the two-dimensional lattice is greater than a given positive threshold p™.

We investigated a wide range of positive thresholds o™ = [0.10 : 0.90]. As expected, correlation networks constructed
with increasing value of the threshold p* are characterized by a decreasing number of links, which results in significant
changes in the corresponding degree distribution. Networks obtained with low values of the threshold p™ result in narrow,
peaked degree distributions and relatively high values of the mean degree (k). Topologies resulting from very strong
correlations, however, are characterized by a distribution of links that has a mean close to the minimum value of (k) = 1
and drops off very rapidly. Interestingly, in between those conditions there exists a correlation threshold that creates a
dynamically induced network with a power-law distribution of degrees that is shown in Fig. 1. The connectivity of a network
obtained under this particular condition is inspected and only nodes that are part of a giant component are considered to be
a part of new topology. The resulting network consists of 6740 nodes with a mean degree of (k) = 38. For a correlation
threshold p* = 0.61, we find that the distribution of links follows an inverse power law with the scaling parameter
v = 1.20 £ 0.23 (R* = 0.9556).

How can the dynamical origin of this extremal condition be explained? From an intuitive point of view there exists a
connection between the scale-free distribution of links and Zipf's law [8,9]. In fact, if we rank the nodes moving from the
richest to the poorest, according to Zipf [ 10] we should obtain the relation between the connectivity k and rank r:

(4)
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Fig. 1. Degree distribution p(k) for correlation network obtained with a positive threshold p* = 0.61. The line follows estimated power-law relation with
the exponent of v = 1.20.

with the power-law index « being very close to 1. If we select randomly a given rank r with probability 7 (r)dr of being in
the interval [r, r 4 dr], this should be equal to the probability p(k)dk, of having k links in the interval [k, k + dk],

p(k)dk = 7 (r)dr. (6)
Assuming that 77 (1) is constant, we obtain after some algebra

1
p(k) o mv (7)

and thus the two power-law indices are related by

1
v=14 —. (8)
o

This leads us to conclude how an efficient complex network is organized if Zipf's law applies. For example, this suggests
that the intelligence of human brain should be characterized by v = 2. The recent research work of Fraiman et al. [2] seems
to confirm this prediction. The authors of Ref. [2] studied the two-dimensional Ising model at criticality and using a suitable
threshold p™ established a link between the nodes with a dynamical correlation exceeding that threshold. The interesting
result of that procedure was the emergence of the scale-free distribution density of Eq. (1) with a power index v that, with
the proper choice of average connectivity (k), gives values close to v = 2 [3]. It is remarkable that the same procedure,
applied to the brain, yields results very close to those afforded by the Ising model [2].

It is also interesting to notice that Boettcher and Percus [11] applied the method of extremal optimization to a Ising-
like model to evaluate the rank distribution of Eq. (5) and found that when the number of units tend to infinity the rank
distribution tends to &« = 1. This result implies on the basis of the earlier remarks that the cooperation of units in an Ising-
like model is expected to confirm Zipf's prediction and consequently v = 2. For results confirming this prediction, see also
Refs. [12,13].

We have found, therefore, that the DM model generates a scale-free network at criticality, but with v approaching 1
which violates Zipf's condition of « = 1. The emergence of @ > 1 corresponds to the number of links k dropping very
quickly when we move from r = 1 to subsequent ranks.

3. Embedding scale-free networks in a two-dimensional regular lattice

The efficiency of a network has been mainly studied on the basis of topological length L [6]. The topological distance
between two nodes is the minimum number of steps needed to move from one node to another. The quantity L is the
corresponding mean value of the minimum topological distance between nodes. As a consequence, the emergence of scale-
free networks can be explained by making the conjecture that real networks evolve in time so as to realize maximal
efficiency. In the case of the scale-free network this efficiency is measured by the minimal value of L.

In 2003, Cohen and Havlin [14] determined that scale-free networks are very efficient. They calculated that networks
with N nodes have a topological length L given by

L~ In(InN), (9)

for a power-law index v < 3, which is smaller than in the AB model.

As a consequence of Eq. (9), the topological length L remains small even if N is very large. This relation between L and N
suggests that the complex networks with v < 3 are very efficient.

The region v < 2 has not been studied by many authors. As an interesting example of earlier work in this region we
refer to the work of Refs. [15,16]. In both cases the authors adopt a kind of generalization of the perspective of Albert and
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Fig. 2. Perception length P as a function of v for ad hoc scale-free networks. The circles represent networks with constant (k) = 4.95; the squares represent
networks with constant N = 1313.

Barabasi [1], namely, they grow a network with special prescriptions allowing them to overcome the limiting condition
v > 3 and yielding v < 2.

More recently there has been some interest in the efficiency of hierarchical networks with v < 2[17]and v ~ 1[18,19].
These networks are characterized by very small topological lengths. In the case of Ref. [19], for N — oo the authors predict
the value L = 2. Our numerical calculations show that L is insensitive to v in the range 1 < v < 2. Thus, there are good
reasons to believe that the prediction of Eq. (9) applies with no significant dependence on v.

There are also good reasons to believe that the dynamic source of scale-free networks has a probabilistic rather than
a deterministic origin, as we shall demonstrate. The work of Fraiman et al. [2], although fitting Zipf's condition, allows us
to define the concept of perception length, which is then used to shed light onto the condition v = 1. The nodes of a
two-dimensional regular lattice, where each unit interacts with only its four nearest neighbors, correspond to a network
whose topological efficiency is very low. However, if we let the units cooperatively interact, and we set a link between two
nodes, then when their dynamical correlation is large enough, the resulting dynamical network may have a much lower
L. We record the Euclidean distance between each pair of correlated nodes, and we define the network efficiency as the
corresponding mean value. More precisely, we define the network efficiency by means of the quantity

1 N
P=NZA,-, (10)

where

ki

M=) dy (11)
j=1

and d;; is the Euclidean distance between node i and its nearest neighbor j. We refer to P as the perception length of the
system, this being the measure of the network efficiency replacing 1/L. For numerical analysis, the perception length P is
calculated as follows.

1. Create a 2-dimensional square lattice, where a is the length (in units of the lattice) of the side of the square, and it is
necessary that /N < a.

2. Embed the network on the lattice by randomly assigning the network nodes to lattice points.

. Using periodic boundary conditions for the lattice, calculate the Euclidean length of each link.

4. These lengths are then used to calculate P in accordance with Eq. (10).

w

This procedure was then applied to scale-free networks generated according to the method of Catanzaro et al. [20] with
(k) = 4.95 and values of v ranging from 1 to 2. The nodes were embedded randomly in a square lattice of size just sufficient
to contain the network with the largest number of nodes. The perception lengths were calculated, and the results show that
over this range the perception length increases as v approaches 1 (Fig. 2).

We now compare the sensitivity of the conventional network efficiency (defined as the reciprocal of the network length
1/L) and the perception length P to the variation in v. These results are shown in Fig. 3. Note that the perception length P and
1/L have been normalized to allow the presentation in a convenient scale. These results show that the perception length, as
a measure of network efficiency, is more sensitive to changes in v than the conventional 1/L.

Applying this approach to the DM network discussed in Section 2 above yields a mean perception length = 1382. To
provide a basis for comparison, we calculated the perception length for a comparably sized ad hoc scale-free network, also
prepared in accordance with the algorithm in Ref. [20]. The results are compared in Table 1, which shows a very good
agreement.
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Fig. 3. Network efficiency as a function of v. In both figures, the circles represent the normalized perception length, and the squares represent the
normalized 1/L. Error bars are not shown; standard deviations for the normalized perception lengths were very small (of the order of 0.005).

Table 1
Comparison of perception lengths for the DM network and a comparable
ad hoc scale-free network.

DM network  Ad Hoc network

Degree distribution exponent,v ~ 1.20 1.19
Number of nodes, N 6740 6744
Number of links, k 128,448 128,413
Perception length, P 1382 1373

4. Concluding remarks

The main result of this paper is the proof that the perception length P defined by Eq. (10) is more sensitive to v in the range
1 < v < 2, and may therefore be a more useful measure of network efficiency than the topological length L [6]. This new
definition is based on the assumption that the scale-free networks, even those derived using deterministic and hierarchical
arguments [ 17-19], are compatible with the dynamical derivation. The apparent conflict between the two kinds of network
is explained by noticing that the correlation between different nodes evaluated according to the numerical prescription
of Section 2 rests on time windows of finite size and moving these windows to different time regions generate different
networks with the same hierarchical topology. An alternative but probably more attractive way to explain this is that the
leadership moves in time from some nodes to others. The nodes of the two-dimensional regular lattice that we used for the
dynamical derivation of the free-scale distribution of Eq. (1) are totally equivalent, and the rank differences between the
richest and the poorest nodes are temporary and in the long time run the same high rank is shared by all the nodes.

There are some questionable aspects of the dynamical derivation of v = 1, realized in Section 2. First of all this result
depends on an arbitrarily selected threshold p™. In addition, the power index v derived from the data in Fig. 1 is affected
by the large fluctuations of the distribution density p(k) for large values of k, thereby explaining why we derive v = 1
rather than v = 2, as in the work of Ref. [3]. However, on one hand, this observation led us to the discovery of the new
measure of network efficiency of Eq. (10) and, on the other hand, as already mentioned in Section 1, the DM model is not
quite equivalent to the Ising model.

Furthermore, the interesting fact that « = 1 (Zipf's law) is related to v = 2 is not totally convincing. The authors of
Ref. [9] established a connection between topological and dynamical properties by running a random walker on a scale-free
network with the power index v. They found that the waiting time distribution density for returns of the walker to a given
node are described by an inverse power law with power index . = 3—v. Using a generalized central limit theorem, they also
proved that the same index  also describes the inverse power law form of the probability density of relative frequencies
p(f) ~ f~*, so that, in analogy with Eq. (8), a rank-frequency law f ~ r~* yields u = 1+ 1/a, hence = 1/(2 — v),
namely « = 1for v = 1.Itis interesting to note that v = 1yields « = 2, and that the value u ~ 2 emerges from the recent
neurophysiological work of Refs. [21,22].

Thus, in addition to the new efficiency measure of Eq. (10), which is the unquestionable result of this paper, we are also
led to make the plausible conjecture that the DM model may be an adequate tool to study the emergence of intelligence



in the sense pointed out by Couzin [23] and Cavagna et al. [24]. According to these authors the flocks of birds, as well as
the brain [25,26], are systems at criticality, with a correlation length as large as the size of these systems. We are also led
to make the conjecture that the dynamical generation of a scale-free network with v = 1 may be the manifestation of the
principle of network maximal efficiency: a network of cooperatively interacting units evolves naturally so as to maximize
P, the new measure of network efficiency.
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Abstract—Consensus algorithms have generated a lot of interest
due to their ability to compute globally relevant statistics by only
exploiting local communications among sensors. However, when
implemented over wireless sensor networks, the inherent iterative
nature of consensus algorithms may cause a large energy con-
sumption. Hence, to make consensus algorithms really appealing
in sensor networks, it is necessary to minimize the energy neces-
sary to reach a consensus, within a given accuracy. We propose a
method to optimize the network topology and the power allocation
over each active link in order to minimize the energy consumption.
We consider two network models: a deterministic model, where
the nodes are located arbitrarily but their positions are known,
and a random model, where the network topology is modeled as
a random geometric graph (RGG). In the first case, we show how
to convert the topology optimization problem, which is inherently
combinatorial, into a parametric convex problem, solvable with
efficient algorithms. In the second case, we optimize the power
transmitted by each node, exploiting the asymptotic distributions
of the eigenvalues of the adjacency matrix of an RGG. We further
show that the optimal power can be found as the solution of a
convex problem. The theoretical findings are corroborated with
extensive simulation results.

Index Terms—Consensus algorithms, minimum energy con-
sumption, random graphs, sensor networks, topology control.

I. INTRODUCTION

VERAGE consensus algorithms have received consider-

able attention in recent years because of their ability to
enable globally optimal decisions using only local exchange of
information among nearby nodes [1]-[3]. The price paid for
this simplicity and the underlying decentralized philosophy is
that consensus algorithms are inherently iterative. As a con-
sequence, the implementation of consensus algorithms over a
wireless sensor network (WSN) requires an iterated exchange

Manuscript received October 25, 2010; revised May 13, 2011; accepted
September 21, 2011. Date of publication October 13, 2011; date of current
version December 16, 2011. The associate editor coordinating the review of
this manuscript and approving it for publication was Dr. Mark Coates. This
work was supported in part by the WINSOC project, a Specific Targeted
Research Project (Contract Number 0033914) co-funded by the INFSO DG of
the European Commission within the RTD activities of the Thematic Priority
Information Society Technologies.

S. Sardellitti and S. Barbarossa are with the DIET, Sapienza University
of Rome, 00184 Rome, Italy (e-mail: Stefania.Sardellitti@uniromal.it;
sergio@infocom.uniromal..it).

A. Swami is with the ARL, Adelphi, MD 20783 USA (e-mail: a.swami@ieee.
org).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2011.2171683

of data among the nodes, which might cause an excessive en-
ergy consumption. This must be contrasted with a centralized
strategy where there is a sink node that, after collecting all the
observations from the sensors (perhaps over multiple hops), is
virtually able to compute the desired statistic in a single shot.
Hence, to make consensus algorithms practically appealing in
a sensor network context, it is necessary to minimize the en-
ergy consumption necessary to reach consensus. Clearly, the
network topology plays a fundamental role in determining the
convergence rate [4]. It is well known that, as the network con-
nectivity increases, so does the rate of convergence. However,
having a densely connected network requires a high power con-
sumption to guarantee reliable direct links between many nodes.
In principle, having a fully connected network is equivalent to
having as many sink nodes as sensors, so that the convergence
time of fully connected networks is minimum. However, the
power consumption necessary to maintain a fully connected net-
work is also maximum. On the other hand, a minimally con-
nected network entails low power consumption to maintain a
few links, but, at the same time, it requires a large convergence
time. Since what really matters in a WSN is the overall power
spent to achieve consensus, this paper addresses the problem
of finding the optimal network topology that minimizes this
overall power consumption, taking into account convergence
time and transmit power necessary to establish reliable links
Jjointly. The search for the optimal topology is, per se, a combi-
natorial problem whose solution becomes prohibitive even for
small scale networks. Nevertheless, we will present a relaxation
technique that converts the problem into a convex problem, with
minimum performance loss.

If the links among the nodes are symmetric, or, equivalently,
if the graph describing the network topology is undirected, the
convergence rate can be lower bounded through the so called
algebraic connectivity, defined as the second smallest eigen-
value of the graph Laplacian [5]. For this reason, there have
been works aimed at maximizing the algebraic connectivity of
a given undirected graph by a suitable choice of the weights as-
sociated to each edge [6], [7]. Alternatively, in [8] it was shown
how some network topologies, such as small world graphs, can
greatly increase the convergence rate. In [9], the authors show
that nonbipartite Ramanujan graphs constitute a class of topolo-
gies maximizing the convergence rate. In [10] it was shown how
to add edges from a given set to a graph in order to maximize its
algebraic connectivity. Other works, for example [11], proposed
strategies to improve the convergence rate of gossip algorithms
through geographic routing.



However, in all these works, the focus is always on conver-
gence time and there is no cost associated with the establish-
ment of the graph topology. Conversely, in our work, since the
graph represents a real network, we consider as the optimiza-
tion metric the power consumption necessary to maintain re-
liable communication links among the nodes, taking into ac-
count the radio propagation model, multiplied by the number of
iterations necessary to achieve consensus. From this perspec-
tive, enforcing a small world, scale-free, or Ramanujan graph
topology may not be the best choice for a wireless network,
whose topology should depend on the application at hand as
well as on the propagation model.

In the wireless communication network context, there have
been works on optimizing the network topology in order to min-
imize the power consumption necessary to guarantee connec-
tivity, e.g., [12], [13]. These works concentrate on the communi-
cation task and do not make any specific reference to the running
application. However, it is now well established, in the sensor
network context, that, whenever possible, an efficient wireless
sensor network design should take into account the specific goal
of the sensor network [14]. For this reason, we focus on the
achievement of consensus in a WSN. It is well known that one
of the most crucial parameters in WSNs is energy consumption,
because in many contexts it is hard to recharge the batteries or
scavenge energy from the environment. For this reason, in most
applications, minimizing energy consumption is more appro-
priate than minimizing convergence time (although, there are
important applications where the latter could be more impor-
tant). In [15], the minimum energy consumption problem was
studied, assuming a common transmit power. As shown in [15],
there typically is an optimum power that minimizes the energy
necessary to achieve consensus within a prescribed accuracy.

In this work, we generalize the initial idea suggested in
[15] and we propose a method for optimizing the network
topology and the power allocation across every link in order
to minimize the energy necessary to achieve consensus. We
consider two classes of networks: a) deterministic topologies,
with arbitrary, but known, node locations, and b) random
geometries, with unknown node locations, modeled as random
variables. In the deterministic case, we optimize both topology
and power allocation. Differently from [6], we do not assume
any prior topology, as the topology comes out as a result of the
optimization. Topology optimization is, in general, a combina-
torial problem and hence an NP-hard problem (recall that an
undirected graph composed of n nodes may assume 2"("~1)/2
topologies). To tackle this issue, we propose a relaxation tech-
nique that allows us to formulate topology optimization as a
convex parametric problem. Then, we show that the effect of
this relaxation on the performance is negligible.

In the random topology case, where the internode distances
are unknown, we show how to optimize the single (common)
transmit power, modeling the network topology as a random
geometric graph, a model suitable for wireless networks. We
provide both theoretical and simulation results, exploiting the
theory of the eigenvalues of random geometric graphs.

The paper is organized as follows. In Section II, we briefly re-
view the consensus algorithm. In Section III, we introduce our
communication model and formulate the optimization problem.
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Section IV is devoted to topology optimization for arbitrary
networks. In Section V, we start by providing a closed form
expression, albeit approximate, for the algebraic connectivity
of a random geometric graph. Then we use this expression to
proceed with the topology optimization for random geometric
graphs. The analytical findings are corroborated with extensive
simulation results.

II. BRIEF REVIEW OF CONSENSUS ALGORITHMS

Let us consider a wireless network composed of n sensors.
The network topology can be represented as an undirected graph
G = {V,E} where V denotes the set of n vertices (nodes)
v; and E C V x V is the set of bidirectional edges (links)
eij = ej; connecting v; and v;. Furthermore, let A be the
n x n-dimensional symmetric adjacency matrix of the graph G,
with elements a;; = 1if e;; € E and a;; = 0 otherwise. Ac-
cording to this notation and assuming no self-loops, i.e., a;; = 0,
Vi = 1,...,n, the degree of node v; is defined as deg(v;) =

n n
> aij = Y. aji. The degree matrix D is defined as the di-
i—1 j—1
zlgonal mat;ix whose diagonal entry is d;; = deg(v;). Let N;

denote the set of neighbors of node 4, so that |AV;| = deg(v;)!.
The Laplacian matrix of the graph G is the n. X n symmetric
matrix I := D — A, whose entries are

bij = 1tji = { deslvi)

—a;j

ifj=4
if G £ M

Given a set of measurements z;(0), collected by node i, for
i1 = 1,...,n, the goal of the consensus algorithm is to allow
every node to compute a globally optimal function of the mea-
surements, say x*, through a decentralized mechanism that does
not require the presence of a sink node, but builds on the interac-
tion among nearby nodes only. Let us consider, for simplicity,
the case where x* is the average of the measurements. In this
case, reaching an average consensus can be seen as the mini-
mization of the disagreement between the states x; of the inter-
acting nodes. One of the nice properties of the Laplacian is that
the disagreement can be expressed as a quadratic form built on
the Laplacian [16]

@)= 13 3 i)

i=1jEN;

I = 1
=1 Z Z aij(z; — x;)? = izTL.'l;. 2)

i=1 j=1

An important property of the Laplacian is that it has, by con-
struction, a zero eigenvalue, whose multiplicity is equal to the
number of connected components of a graph. Hence, a graph is
connected if its zero eigenvalue has multiplicity one [5]. Fur-
thermore, if the graph is connected, the eigenvector associated
with the null eigenvalue is the vector 1, composed of all ones.

The minimization of the quadratic form in (2) can be achieved
using a simple steepest descent technique. In continuous time,
the minimum of (2) can be reached through the following up-
dating rule [2]:

(1) = —La(t) 3)

By | - | we denote the cardinality of the set.
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initialized with £(0) := 2. By construction, the eigenvalues
of L are all nonnegative. Hence, the convergence of (3) is guar-
anteed. In particular, if the graph is connected, the state vector
x(t) in (3) converges to the projection of the initial state z, onto
the nullspace of L, spanned by the vector 1, i.e., [2]

z(t) — l 117 z,. 4

This corresponds to having all the nodes converging
to a consensus on the average of the initial observa-
tions z* = > ", x;(0)/n. Moreover, the convergence
rate is lower bounded by the slowest decaying mode,
ie., by the second smallest eigenvalue of L, \o(L),
also known as the algebraic connectivity of the graph.
More specifically, if the graph is connected, the dynamic
system (3) converges to consensus exponentially [2], i.e.,
lz(t) — z*1|| < ||l=(0) — z*1]|O(e~ "), with r = Xo(L).
Defining the disagreement vector as Az(t) = z(t) — z*1, we
can write [[Az(t)|| < [JAz(0)]|O(e™"). As a consequence,
the convergence time 7T, can be defined (see also [2]) as the
time necessary for the slowest mode of the dynamical system
(3) to be reduced by a factor v < 1, i.e., the time for which
|Az(T.)|| < v||Az(0)||. Hence, we can set

~—

log(y

Tc:i/\g(L)'

)

III. OPTIMIZATION CRITERION

It is well known that one of the most critical issues in WSN is
energy consumption. Neglecting for simplicity the power spent
for processing operations with respect to the power to be used
to enable wireless communications, the overall power spent to
reach consensus is the product between the sum of the power
Pt necessary to establish the communication links among the
nodes and the number of iterations Nj; necessary to achieve
consensus. The exchange of information among the nodes is
supposed to take place in the presence of a slotted system, with a
medium access control (MAC) mechanism that prevents packet
collisions. Denoting by T the duration of a time slot unit, the
number of iterations is then approximately3 N;; = T, /Ts.

Introducing the power coefficients p;;, ¢ # j, denoting the
power used by node i to transmit to node j with p;; = p;;, and
the binary coefficients a;; assessing the presence (a;; = 1) of a
link between nodes ¢ and j or not (a;; = 0), the power spent by
the whole network in each iteration is then P;; = Z” @ijPij-
Using (5), our goal is to minimize the following performance
metric:

Dot D GijPij
A2 (L(a))

2The discrete-time counterpart of (3) is [2]

&= PNy = K

(6)

z[k + 1] = z[k] — éLz[k] := Wx[k]

where € is a parameter chosen so as to ensure that no eigenvalue of W is greater
than one in modulus.

3We neglect rounding errors, which tend to vanish if the duration of the up-
dating time slot is small with respect to the convergence time.

where K incorporates all irrelevant constants. This metric is
proportional to the integral of power consumption with respect
to time and then it represents an energy consumption. In (6),
we have made explicit the dependence of the Laplacian L on
the vector @ = A(:) containing all binary coefficients a; ;- since
finding these coefficients is the goal of our optimization. More
specifically, our goal is to find the set of active links, i.e., the
nonzero coefficients a;;, and the powers p;; that minimize (6),
under the constraint of maintaining network connectivity, which
entails A2(L(a)) > 0. The problem can then be formulated as
follows:

D 2 GigPij

‘o No(L(a))
st. €< A(L(a)) [P.0]
i € {0,]}

where € is an arbitrarily small positive constant used to prevent
the algebraic connectivity from going to zero, which would cor-
respond to a disconnected network and p is the vector with en-
tries p;;.

Since the topology coefficients are binary variables, [P.0] is
a combinatorial problem, with complexity increasing with the
size n of the network as 2"("=1/2 Hence, its solution, for
medium/large scale networks is prohibitive. Our objective is to
modify [P.0] in order to turn it into a convex problem, with neg-
ligible performance losses.

A first simplification comes from observing that the coef-
ficients a;; and p;; are not independent of each other. Their
dependence is indeed a consequence of the radio propagation
model. In this work, given the complexity of the topology op-
timization problem, we assume a fairly simple communication
model. We state that there is a link between nodes % and j, and
then a;; = 1, if the signal-to-noise ratio SNR; at the receiver
node j, when node 7 transmits, exceeds a minimum value $min,
i.e.,, SNR; > smin. If we denote by pg; the power received by
node j when node i transmits, and by o2 the noise power, as-
sumed for simplicity to be the same at each receiving node, we
have a;; = 1,if pr; > smin(rfl = Pmin, OF otherwise a;; = 0.
Assuming flat fading channel modeling, we use the following
propagation model:

Pij

"1 (riy /o) ®)

PRj

where 7;; is the distance between nodes 7 and j, and 7 is the
path loss exponent. The parameter ry plays the role of a scaling
factor or reference distance, and typically corresponds to the so
called Fraunhofer distance, such that, if r;; > rg, the receiver
is in the transmit antenna far-field, where the received power
is inversely proportional to r%; conversely, if 7;; < 79, the
receiver is in the transmit antenna near-field, where the received
power is approximately equal to the transmitted one. The unity
term in the denominator of (8) is used to avoid the unrealistic
situation in which the received power could be greater than the
transmitted one. Given the propagation model (8), the relation



between the power coefficients p;; and the topology coefficients
ij is then

0 otherwise

In the following sections we will show how to relax this rela-
tion in order to simplify the solution of the optimal topology
control problem. We will consider two scenarios: a) a deter-
ministic topology, with arbitrary node geometry, where the dis-
tances between the nodes are known, and b) a random topology,
where the positions of the nodes are unknown and modeled
as random variables. In case a), since the distances among the
nodes are known, we optimize the power allocated to each link.
This strategy is also instrumental in determining the topology,
which is equivalent to finding the n(n — 1)/2 entries a;; of
the adjacency matrix. Conversely, in the random topology case,
since the distances are not known, we assume broadcast com-
munications, and look for the optimization of the coverage ra-
dius of each node. The deterministic topology case will be the
subject of Section IV, whereas the random case will be studied
in Section V.

IV. OPTIMAL TOPOLOGY AND POWER ALLOCATION FOR
ARBITRARY NETWORKS

In the case where the distances between the nodes are known,
the optimization criterion amounts to solving problem [P.0],
which involves a combinatorial strategy that makes the problem
numerically very hard to solve, especially for medium/large
scale networks. The relation (9) reduces the set of unknowns
to the set p;;, but the problem still retains most of its difficul-
ties. To make problem [P.0] to be numerically tractable, we
introduce a first relaxation so that, instead of requiring a;; to
be binary, we assume a;; to be a real variable belonging to
the interval [0,1]. Under this assumption, problem [P.0] is
not combinatorial anymore, but it is still a nontrivial nonlinear
constrained problem. The first important contribution of this
paper is to propose a relaxation technique that transforms the
previous problem into a convex problem that can be solved with
well established and efficient numerical tools. We achieve this
goal by first introducing the following relationship between the
coefficients a,; and the distances 7;;:

1

- 1+ (Ti]‘/Tc,LJ)O‘ (10)

Q5
where « is a positive coefficient and 7, ; is the coverage radius,
which depends on the transmit power. According to (10), a;;
is close to one when node j is within the coverage radius of
node i, i.e., r;; < 7, whereas a;; is close to zero, when
T;j > 1. The switching from zero to one can be made steeper
by increasing the value of a.

Given the propagation model (8), the coverage radius r,; is
related to the power p;; and the minimum power required for
reliable communication pin, as follows:

- 1/n
Teyy = T0 < Pij - 1) .
Pmin

(1)
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Plugging (11) in (10), the coefficients a;; can be written explic-
itly in terms of the power coefficients as follows:

7’3 (pz7 - pmin)a/n

7“3 (pij - pmin)a/n + T%pi/iz

(12)

aij = aij(pij) =

This relation can be also inverted to find the coefficients p;; as
a function of a;;, as follows:

. n/a
Pij = q(@ij) = Pmin + k1 <1 1 ) (13)
= @i

n

with k1 = pmin%. Expression (12) becomes our relaxed ver-
0

sion of (9) and it allows us to reduce the set of variables to the

only power vector p. Consequently, problem [P.0] can be re-
laxed into the following problem:

min P
» Xa(L(p))
st €< (L(p) [P.1]

where, thanks to (12), the Laplacian is now written explicitly
in terms of the power coefficients p;;. In principle, the last in-
equality in (14) makes any link feasible. But this does not imply
that the final network will be fully connected, because some co-
efficients a,;; might turn out to be equal zero, implying that the
link between node 7 and j is not active. The first important re-
sult, related to the solution of (14), is the following.

Theorem 1: Given the propagation model in (8), using the
relations (12) between the topology coefficients a;; and the
power terms p;;, problem [P.1] is a convex-concave fractional
problem if n > «.

Proof: Let us consider the objective function in [P.1].
The numerator of [P.1] is clearly a convex function of p. We
only have to prove the concavity of the algebraic connectivity
A2(L(p)) with respect to the transmit powers. As a first step,
we prove that a,;(p;;) is a concave function of p;;. Then, we
use this to show that A( - ) is a concave function of p.

(D) ai;j(psj) is a concave function of p;;: We compute the
second-order derivative of the function in (12) with respect to
Dij

2

TGP — o ks — o+ )i — poie)*”

L Pij
(15)
where the constants ks, k3 and k4 are given by

akyko (pij - pmin)a/n72

ky =1y, ks = ’
2o (ks + k2(pij — Pmin)/"]* 0%’
ky = T?Jp;/lz

Note that ko, ks > 0; since p;; > Pmin V4, J, wWe also have
ks > 0. From (15), we see that, if « < 7, the second-order
derivative is always nonpositive and then a;;(p;;) is a concave
function of p;;.

(ii) Aa(-) is concave in p: Exploiting the properties of the
Laplacian [16], we can write the quadratic form associated to
L as in (2). From (12), we also note that each coefficient a;;
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depends only on the corresponding link power p;;, and not on
the other link powers. Given any pair of power vectors p(') and
p? letp = Bp™) + (1 — B)p?), with 0 < 8 < 1. Hence, we
have

1 n n
3 SO aiipi) (i — ;)
i=1 j=1

= % Z Z aij (95 + (1= D) (s - 2)°

> 2zz[m] () +( = B)ass (o2)]
oo (7)) =

1=17=1
(16)

2" La(p))z=

— ;)

=pzTL (a, (p(l))) x4 (1-8)z"

where the inequality follows from the concavity of a;;(pi;).
We further recall that the algebraic connectivity Ao(L) is the

solution of the following positive semidefinite program (SDP)

[5]:

T Lz

Ao(L) = (17)

min
zl1 |jz||=1

Hence, using (16), we obtain

A2 (L (/)’p(” +(1- ﬂ)p(”))
> Ao (ﬂL (p“)) +(1=-P)L (p@)))

> 0% (1 (p0)) + (- 92 (£ (52))

where the last equality follows from a majorization theorem for
eigenvalues#. Thus, the algebraic connectivity is a concave func-
tion of the vector of transmit powers. Hence, (14) is a convex-
concave fractional problem since it is the ratio of a convex and
a concave function of p. [ ]

Since (14) is a convex-concave fractional problem, we can use
one of the methods that solve quasi-convex optimization prob-
lems, see, e.g., [18], [19]. For example, we can use the nonlinear
parametric formulation proposed in [19]. To do so, we introduce
the following function:

h(p) = min{p”1 — plo(L(p)) : p € T}

where 1 is a real positive parameter and I' = {p : p >
1pmin, A2(L(p)) > €}. In order to find the solution of this
problem we could use the following result, proved in [19] and
[20].

Theorem 2: Let f(x) and g(x) be continuous real-valued
functions Vx € ©, where © is a nonempty compact subset of
R™ and g(z) > 0 V& € ©. Then

1T € @}

c_ @) [ f@)
T e T {gu)'

4Let A, B be Hermitian matrices, and let C = A + B. Let their eigen-
values be sorted in nondecreasing order. Then the vector of eigenvalues A(C')
majorizes the vector A(A) + A(B). Since A; (L) = 0 for the graph Laplacian,
it follows that A>(A 4+ B) > X2(A) 4+ A2(B). See [17, Theorem 4.3.27].

with z* € 0, if, and only if

h* = h(p*,2*) = min{f(z) — p*g(x) : 2 €O} =0
where h(p*,z*) means that for 4 = p* the minimum of
{f(z) — u*g(x) : x € O} is taken on at z = z*.

Before applying Theorem 2, it is useful to further convert the
convex-concave optimization problem [P.1] into the following

parametric problem:

mpin p'1— nAra(L(p))
st e < A (L(p))
1pmin S p-

[P.2]
(13)

By Theorem 1, A2 (L(p)) is a concave function of p. Hence, the
objective function in [P.2], as sum of convex functions, is a
convex function. The constraint sets are convex. Then, problem
[P.2] is a convex parametric problem, whose solution is a func-
tion of the parameter y that controls the tradeoff between the
global transmit power and the convergence time. Later on, we
will show how to find the optimal .

Since problem [P.2] is convex, it can be solved using nu-
merically efficient convex programming tools. However, before
applying any convex tool, it is worth noticing that the feasible
set in [P.2] is not compact. Hence, even if a solution exists, in
principle, it could be unreachable in finite time. To overcome
this potential drawback, we propose next an alternative formu-
lation of [P.2]: Instead of looking for the set of power coeffi-
cients p;;, and then for the a;;, using (13), we can reformulate
[P.2] so as to look directly for the variables a;;. Then the opti-
mization problem in (18) can be rewritten in terms of vector a,
as follows:

min ¢(a) - pho(L{a)
s.t. e < Ag(L(a)) [P.3]
0<a<l1 (19)

where ¢(a) = Y., Z, 1 q(ai;). We verify next that this

problem is still convex. To study the behavior of ¢(a), we com-
pute the second-order derivative of ¢(a;;), obtaining

d*q(aij) 0 ay \VP 1 U
Y = 7<——1 2)
da?; Yo \1—ay (I—ay)* Lo 2

We infer that

d*q(aiz)

>0 n— 2aca;; > 0.
da n — o+ 2aag;

We note that, if n > «, then d qia’) > 0for0 < a;; <1,

so that ¢(a), as a sum of convex functions, is convexS. Finally,
the algebraic connectivity As(L(a)) is a concave function of
a, as can be proved following the same steps as in Theorem

SNote that ¢(a) is the sum of functions of the single variables ;. Hence the
convexity of ¢(a) can be studied looking at the convexity of the single functions

Q(ai] )



1. Then, the optimization problem [P.3] is also a convex para-
metric problem, perfectly equivalent to the original problem in
(18), since the change of variables p;; = ¢(a;;) in (13) ensures
a one-to-one mapping ¢ : R — R, for 0 < a;; < 1, with
image covering the problem domaln in ( 18) (see [21, p. 130]).
Hence, assuming 0 < a <1 — ¢, with € an infinitesimal posi-
tive constant so that the feasible set of (19) Y = {a: 0 < a <
—€¢, Mo(I(a)) > €} is acompact convex set in R”("~1)/2 we
ensure that the set of minima of (19) is nonempty and by the con-
vexity of the problem we can deduce that all local minima are
also global. Note that since the optimization problem in (19) is
convex an optimal solution can be found via efficient numerical
tools. Furthermore, using Dinkelbach’s algorithm [19], based
on Theorem 2, we are also able to find the optimal parameter 1
in [P.3]. More specifically, the Dinkelbach’s algorithm, applied
to our problem, proceeds through the following steps:
1. Set (z :) 1 and let @; be a feasible point of Y, with p; =
o (@; .
2. Set = p; and find @; 1 € Y that solves the minimization
problem in [P.3];
3. 16 A, @igr) |=] dl@iv1) —pAa(L(aiy)) |< €, with e”
an arbitrarily small positive constant, stop and take @, 1 as
the optimal link coefficient vector; otherwise, setz = ¢+ 1,
i = % and go tlo step 2. o
Since the topology coefficients a;; obtained in this way are
real variables belonging to the interval [0, 1], to obtain the net-
work topology, it is necessary to quantize them to convert them
into binary values, 1 or 0, indicating the presence or absence
of a link. This quantization is achieved by comparing each a;;
with a threshold asy,. Of course, the final topology will depend
on the threshold value. Moreover, the thresholding operation
will also affect the final result in terms of convergence time
and energy consumption. It is then of interest to check how
sensitive the final topology, as well as convergence time and
energy consumption, are to the choice of a. In the ensuing
section, we present some numerical results to shed light on the
resulting topologies and their dependence on the propagation
model parameters.

A. Numerical Examples

Since our optimization procedure is based on a relaxation
technique, the first important step is to evaluate the impact of
the relaxation on the final topology and performance.

Example 1: Comparison Between Exhaustive Search and Re-
laxed Technique: We compare now the topology obtained as a
solution of the relaxed problem [P.3] with the optimal graph
obtained by solving directly problem [P.0] using an exhaustive
search over all possible topologies. For complexity reasons, of
course we can only perform this comparison for small scale net-
works. We consider networks of n = 4 and 6 nodes.

To provide results not conditioned to a specific geographic
node deployment, we averaged the results over 100 statistically
independent realizations of the nodes locations. In each iteration
we compute the minimum energy &,,, reached using the optimal
exhaustive search over all possible topologies, and the energy
&, corresponding to the network topology whose coefficients
a;; are obtained by solving problem [P.3] and thresholding the
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Fig. 1. Optimal average energy obtained with exhaustive search and average
energy obtained by solving the relaxed problem [P.3] versus 7, for different n
values.

04 -
i 10 1 1w ot

Fig. 2. Ratio between the optimal energy obtained with exhaustive search and
the energy obtained by solving the proposed relaxed problem [P.3], versus a1,
for different values of n.

result with the threshold a¢, = 2x 1073, In Fig. 1, we report the
average energies &, and &, versus . We can note from Fig. 1
that the loss in terms of optimal energy due to the relaxation of
the original problem is negligible (the energy loss is less than
1.7 dB).

Example 2: Impact of Thresholding Operation on Final
Topology: Clearly, the selection of the threshold ay plays a
role in the identification of the final topology. To evaluate the
impact of ay, on the final topology, in Fig. 2 we report the
ratio ggr versus a4y, for different numbers of nodes n and for
n = 5. The energies are averaged over 100 independent node
realizations. We can observe from Fig. 2 that there is a wide
range of values of ax}, such that the energy loss is practically
independent of ay;,. This shows that our proposed procedure is
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Fig. 3. Optimal topologies, for different threshold values and fixed n(n = 6): (2) ag, = 0.09. (b) awn = 0.05. (¢) aen =5 x 1074, (d) ay, = 1077,

rather robust with respect to the choice of ay},. It is now inter-
esting to check the effect of the threshold ay}, on the topology,
considering larger scale networks (in this case, we can only run
our algorithm, as the exhaustive search is not feasible). As an
example, in Fig. 3 we show the topologies obtained by solving
problem [P.3], for a network composed of n. = 30 nodes, using
different values of ayy, for n = 6. Comparing the four cases
reported in Fig. 3, we notice that, only for very low values of
the threshold [i.e., case (d)], we appreciate a sensitive change
of topology, whereas for a large range of values of asy, the final
topology is practically the same. This means that the proposed
algorithm, in spite of the relaxation step and the subsequent
quantization, yields rather stable solutions.

The previous results pertain to a specific realization of the
node locations. To provide results of more general validity, in
Figﬂ. 4, we report the average value of: a) fraction of active links
ﬁli\){l, b) A2(L); and c) the average energy &,., as a function
of the threshold a.},. The averages are carried out over 100 inde-
pendent realizations of the nodes location. From Fig. 4, we ob-
serve that there is an interval of values of aty, (roughly, between
1075 to 10~2) for which we obtain a strong reduction in the
fraction of active links, with respect to the situation where there
is no threshold, still achieving nearly the same performance, in
terms of algebraic connectivity and energy consumption. This
is indeed an important result, as it shows that the relaxed algo-
rithm is weakly sensitive to the choice of ayy,.
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Fig. 4. Average value of (a) fraction of active links. (b) A>(L). (c) energy
versus threshold value for n = 6.

Example 3: Impact of Propagation Parameters on Final
Topology: 1t is also interesting to look at the change in
topology as a function of the radio communication model. To
this end, in Fig. 5, we plot the optimal topologies achieved for
the same node locations as in Fig. 3, but pertaining to different
path loss exponents 7, for a given threshold. Interestingly, we



notice, as expected, that, as the propagation loss increases (i.e.,
n increases), the network tends to become more and more
sparse.

The results shown in Fig. 5 refer to a single realization of the
node positions. To draw conclusions of more general validity,
we averaged over 100 statistically independent realizations of
the node locations, for networks of 30 nodes. In Fig. 6, we report
the same performance metrics as in Fig. 4, but now as a function
of the path loss exponent 7, setting as;, = 0.09. From Fig. 6,
we observe that when the attenuation is high (i.e., n is large),
reducing the number of links (making the topology sparser) is
more important than reducing convergence time. Conversely,
when the attenuation is low (i.e., n is small), increasing network
connectivity is more important than reducing power consump-
tion. This behavior sounds reasonable and in agreement with
intuition.

V. OPTIMAL TOPOLOGY FOR RANDOM GEOMETRIC NETWORKS

In this section, we remove the assumption that the node lo-
cations are known a priori and model the network as a random
geometric graph (RGG). In such a case, the graph connectivity
properties and the convergence time can only be established in
a probabilistic sense, asymptotically, as the number of nodes
tends to infinity. We refer to [22] for the first basic result about
the convergence of consensus algorithms over random graphs
and to [23] for a more recent generalization of the convergence
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Fig. 6. Average value of (a) fraction of active links. (b) A>(L). (c) energy
versus path loss n for a4, = 0.09.

conditions under stochastic disturbances. As shown in [22],
the rate of convergence of consensus algorithms in the random
graph case is dictated by the expected value E[e=2T-*=(L)].
In the following, exploiting the concentration properties of the
eigenvalues of RGGs [24], [25], we will show how to relate
the convergence time to the expected value of Ay (). This link
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will be fundamental to derive the optimal coverage radius, and
then transmit power, that minimize the energy consumption
necessary to achieve consensus over RGGs. To achieve this
goal, it is fundamental to recall and extend some results about
the spectrum of RGGs.

A. RGGs

A random graph is obtained by distributing n points randomly
over the d-dimensional space R? and connecting the nodes ac-
cording to a given rule. Let V;, = {z1,z2,...,2z,} be a set
of d-dimensional vectors z;, belonging to a compact set 2 =
[—1/2,1/2]¢ of R?, whose entries denote the coordinates of the
nodes in R?, and let || - || be the Euclidean norm on R?. The
graph topology is captured by the adjacency matrix A which,
in this case, is a random matrix. An important class of random
matrices, encompassing the adjacency matrix of our problem,
is the so-called Euclidean Random Matrix (ERM) class, intro-
duced in [26]. Given a set of n points located at positions x;, 7 =
1,...,n,ann X n adjacency matrix A is an ERM if its generic
(i,7) entry depends only on the difference z; — x;, i.e., a;; =
F(z; — x;), where F is a measurable mapping from R? to R.
An important subclass of ERM is given by the adjacency ma-
trices of the so-called RGGs. In such a case, the entries a;; of
the adjacency matrix are either zero or one depending only on
the distance between nodes ¢ and 7, i.e.

1 if ||l — x| <r

. (20)
0 otherwise

A5 =
where 7 is the coverage radius. This is a particular case of an
ERM, corresponding to having

Flai—z;) = {1 = —zl<r,

. (21)
0 otherwise

We will use the symbol G(n, ) to indicate an RGG composed
of n points, with coverage radius 7.

The RGG model is the most appropriate to capture the
topology of a wireless network, as it basically states that there
is a link between two nodes only if they are within the coverage
radius of each other®.

Next, we recall some of the most important properties of
RGG’s, in terms of connectivity and spectrum, as they are rele-
vant to our optimization problem.

1) Connectivity: Some interesting results on the asymptotic
connectivity of random geometric graphs have been derived in a
seminal work by Gupta and Kumar [27] who proved that, given
a set of n points uniformly distributed within a unit square (i.e.,
d = 2), the graph is connected almost surely if the coverage

radius behaves as
log(n) + en
ro(m) =\ =

with ¢,, — oo, as n — oo. Conversely, if ¢,, — —oo, the graph
is disconnected almost surely. This means that the expression

% represents a threshold distance. In the following, we

6In practice, a wireless channel is also affected by fading, multipath, and shad-
owing. Hence, the presence of a link between two nodes depends on two sources
of randomness: distance and fading. In this work, we concentrate on the single
source of randomness, given by the distance between the nodes, but considering
both sources of randomness will be an interesting extension of this paper.

will often use the shorthand notation 7+ (n) to indicate the law

1 S
M, with ¢, — oo, as m — oo. Hence, a coverage
mn

radius 7q(n) behaving as 7+ (n) represents a law that ensures
connectivity with high probability, as n — oo. We will use the
notation 79(n) ~ r*(n) to indicate such a behavior.

In [4], [28], it has been shown that the degree of a RGG
G(n,r) of points uniformly distributed over a two-dimensional
unit torus’ is equal to

d(n) = mr’n (22)

with high probability, i.e., with probability 1—1/n2, if the radius
behaves as ro(n) ~ r(n). This implies that an RGG tends to
behave, asymptotically, as a regular graph, if the coverage radius
is chosen so as to guarantee connectivity with high probability.

We are primarily interested in the second eigenvalue of the
Laplacian, L = D — A, where D is the degree matrix and A is
the adjacency matrix [see (1)]. From (22), D = 7r2nl, so that
we only need to investigate the second largest eigenvalue of A.
Hence, in the ensuing section, we study the spectrum of A.

2) Spectrum of a Random Geometric Graph: In [24], [25],
it is shown that the eigenvalues of the adjacency matrix, or of
the transition probability matrix 8, tend to be concentrated, as
the number of nodes tend to infinity. In particular, in [24] it is
shown that the eigenvalues of the normalized adjacency matrix
A,, = A/n of an RGG G(n,r), composed of points uniformly
distributed over a unit bidimensional torus, tend to the Fourier
series coefficients of the function F' defined in (21)
F(z)= / exp (—2mj2" x)dx (23)

Ja.
almost surely, for all z = [z1,25] € Z2, where Q, = {z =
[z1,72]7 € R? : ||z|| < r}. Using polar coordinates, i.e.,
x1 = psinfand s = pcosf,with) < p <rand0 < 6 < 27,
we obtain

r 2w
F(z) = / / exp (—2mjp(z1 sin @ + 29 cos 0)) pdpdd.
Jo Jo

This integral can be computed in closed form. Setting z; =
Asin ¢ and 2o = A cos ¢, we have

T 2w —¢
P = [ [ oo (-amipd cos(e))papie

with ¢ = 6 — ¢. Furthermore, using the integral expression
for the Bessel function of the first kind of order k, Ji(x) =

= " _exp (jzsin(€) — jkE)dE, we get

F(A,¢)=F(A)=2r /0 Jo(2mpA)pdp.

Finally, using the identity [’ v.Jo(v)dv = u.J;(u), we can make
explicit the dependence of F'(A) on the index pair [21, 22]

. r
F(21,29) = W Jy (27rm/z% + zg) ; 24)
1

2

7A torus geometry is typically used to get rid of border effects.

8The transition probability matrix is the adjacency matrix, normalized with
respect to the node degree, so that the ¢th row of the adjacency matrix is divided
by the degree of node .



Fig. 7. Verification of the inequalities in (26).

This formula allows us to rank the eigenvalues of A,, = A/n.
In particular, we are interested in the second largest eigen-
value of A,,. Considering that the minimum coverage radius

. .. 1 . .
ensuring connectivity behaves as r(n) ~ %@, ie., it

is a vanishing function of n, we can use the Taylor series
expansion of ﬁ‘(zl, z9), for small 7. Recalling that, for small
x, Ji(z) = x/2 — 23/16 + o(x°), we can approximate the
eigenvalues as

mi(af +23) 1t

5 + o(r9).

F’(zl, 29) = mr? — (25)
This expansion shows that, at least for small r, the largest eigen-
value equals 712 and occurs at z; = 2o = 0, whereas the second
largest eigenvalue corresponds to the cases (z; = 1,29 = 0)
and (21 = 0,29 = 1). More generally, we can check numeri-
cally that, for »r < 1/2 and A > 1, the following inequalities
hold true:
ar? > rJy(2mr) > %|.]1(27TTA)|. (26)
The validity of these inequalities can be verified from Fig. 7,
which shows the three terms in (26) as a function of r and A.
In summary, denoting the spectral radius of A,, as (1(A,) =
Maxi<i<n M, where {\;(n)}?_; is the set of eigenvalues

n

of A, it follows that

lim (1(A4,) = max | F(z) |= F(0,0) = nr?

(27)
z€7?

while the second largest eigenvalue of A,,, (2(A,,), converges
to

lim Co(A,) = F(1,0) = F(0,1) = rJy(27r).

n—oo

(28)

We are now able to derive the asymptotic expression for the
second largest eigenvalue of the normalized Laplacian L, =
D,, — A,,, where D,, := D/n is the normalized degree matrix.
Because of the asymptotic property of the degree of an RGG,
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Fig. 8. Asymptotic analysis and simulation results for some eigenvalues of A,,
and for A»(L,,) versus the transmission radius.

shown in (22), the second largest eigenvalue of L,, tends asymp-
totically to

Ao(Ly) = w2 — (2(A,). (29)

Thus, the algebraic connectivity of the graph can be approxi-
mated, asymptotically, as

\o(L) = wnr? — nrJy (277). (30)
Since the previous expressions have been derived in the
asymptotic regime, in Fig. 8 we compare the analytic formulas
for the first and the second largest eigenvalues of A,,, as given
in (27) and (28), with the numerical results obtained by aver-
aging over 100 independent realizations of RGG’s composed
of n = 1024 nodes. We can notice the good agreement in
Fig. 8 between the theoretical expression for the algebraic
connectivity Ao(IL,,), given in (29), and the simulation results.

B. Minimization of the Energy Consumption: An Analytic
Approach

We can now exploit the previous analytic expressions to study
the energy minimization problem for RGG’s. In the random
topology case, since the distances are unknown, we cannot op-
timize the power associated with each link. However, we can
seek the common transmit power that minimizes energy con-
sumption. Thus, in the random setting we assume a broadcast
communication model, where each node broadcasts the value
to be shared with its neighbors. In the lack of any information
about distances among the nodes, we assume that each node uses
the same transmit power. In this case, the network topology can
be modeled as a random graph model. It can be shown [22],
[23] that the system in (3) converges to consensus almost surely,
ie., Pr{tli)rgO z(t) = 2*1} = 1 assuming that each node has a
coverage radius so that the network is asymptotically connected
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with probability one [14]. Then the rate of convergence of the
dynamical system in (3) is given [22], [23] by E[e~2Ts*2 (L)].
Note that defining f(Xs) = e~27*>() and using the Taylor
series expansion of f(\2)? at the point A = E[\s] = m.,, we
can write

+ f(l) (m’AQ)()\Z - m‘AQ)

m
5 /\2) (/\2 - m)\Q)Q
= fk) my, :
+Z#(Ag—m>\2)k. 31)
k=3
Consequently, taking the expected value, we get
@) (m
ELFO)] = flma) + L2002 ()

2

denoting with 03, = FE[(A2 — my,)?] the variance of As. But
since all central moments of order greater than one of the eigen-
values tend to zero, because of the concentration property, we
can use the approximation

E[6_2T5>\2] ~ e—QTSE[)\Q]. (33)
As a consequence, the energy spent to achieve consensus can
now be approximated as

np
2E[N2(L(p))]

This is the performance metric we wish to minimize in the
random scenario, with respect to the single unknown p.

In particular, using the asymptotic expression (30) for the al-
gebraic connectivity, we can introduce the following metric

npmin[l + (’r‘/’l"o)n]
nar? — rnJy(2nr)

E=K (34)

£(r) = (35)

We now check, numerically, that the function £(r) given in (35)
is a convex function of r, for rg(n) < r < 0.5, where ro(n) ~
r*(n), to ensure connectivity.

Let us rewrite (35) as

g(r)
)\2(’1“)

with g(r) = npmin[l + (r/r0)"] and A2(r) as in (30). The first—
and second—order derivatives of g(r) are, respectively

E(r) =

, dg(r) rn=t
=—= min 0
g(r)==g,= = MPminnt= >
1 dz(]('f’) T’r]72
g (T) = dr2 = npminn(n - 1) ro" >0

9For simplicity we drop in A» the dependence on L.

so that g(r) is a convex increasing positive function of 7. Let us
now study the behavior of Az(r). Using

d[r™J,
w: M Im—1(r) for m=0,1,2,...
we obtain
: dX
Ay(r) = ;,,ET) = 2mrn[l — Jo(27r)]

with Ay (r) > 0 for ro(n) < r < 0.5. Moreover, since

dJm (7 m
dr( ) = 7Jm(r) — Jmy1(r) for m=0,1,2,...
we have
" a2\
Ay (1) = dzy) = 27n[l — Jo(2ar)] + dx2rndy (2mr).
LT

(36)

Observe that the first term on the right-hand side (RHS) of (36)
is always positive. Furthermore, if < 1/2, the second term is
also positive, since .J; (277) > 0 forr < 1/2. Hence, Ay (1) > 0
and we can conclude that the algebraic connectivity is an in-
creasing and convex function of r for ro(n) < r < 0.5, where
ro(n) ~ rt(n).

We can now compute the first- and second-order derivatives
of the energy function with respect to r. We get

£y = L) Xa(rglr)
Ao(r)  A3(r)

and, substituting the corresponding expressions, the extremal
points can be obtained by solving the following nonlinear
equation:

E(r) = ay(r) + as(r)Jo(2mr) — as(r)Jy(2mr) =0

with a1 (r) = w[(n — 2)r" — 2], az(r) = 27(r" + 70") and
az(r) = nr"~'. Furthermore, the second derivative of £(r) is
given by the equation shown at the bottom of the page. In Fig. 9,
we report £ ”(r) as a function of r, for different values of 7.
From Fig. 9, we can check that the second derivative is always
positive in the range of interest. This verifies that £(r) is in-
deed a convex function of r defined on the compact convex set
ro(n) < r < 0.5. As a consequence, we can state that there
is always at least a radius r that globally minimizes the energy
consumption in a RGG.

Numerical examples. In Fig. 10, we compare the value of £(r)
obtained by our theoretical approach and by simulation, for var-
ious values of the path loss exponent, 2 < 7 < 6. The results
are averaged over 100 independent realizations of random geo-
metric graphs composed of n. = 1000 nodes. For each 7, the pair
of radius and energy providing minimum energy consumption is
indicated by a circle (simulation) or a star (theory). We observe
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Fig. 10. Global energy consumption versus transmission radius for an RGG;
theoretical values (solid) and simulation (dashed).

that the theoretical derivations provide a very good prediction
of the performance achieved by simulation. Furthermore, for
each 7, there is a coverage radius value that minimizes energy
consumption.

The optimal values of the coverage radius as a function of 7,
as predicted by our theoretical derivations or by simulation, are
reported in Fig. 11. From this figure, we observe that there is
a clear transition from the low power attenuation regime (i.e.,
n < 3.5), where the optimal radius tends to make the network
fully connected, as opposed to the strong attenuation situation
(n > 4.5), where the network is minimally connected. This
means that in the low attenuation case, minimizing convergence
time is more important than minimizing power consumption.
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Fig. 12. Global energy consumption versus per node transmit power for an
RGG; theoretical values (solid) and simulation (dashed).

Conversely, in the large attenuation case, it is more important to
minimize power consumption, by limiting the number of links
as much as possible, compatibly with the constraint of ensuring
connectivity.

Fig. 12 shows the average energy consumption versus the per
node transmit power p, under the same settings of Fig. 10. The
circles (simulation) and the stars (theory) represent, again, the
values of p that minimize energy consumption, for each 7. It
can verified the existence of an optimal transmit power value
minimizing the energy consumption.

Finally, Fig. 13 shows the optimal per node power versus 7.
For low values of 7, the transmit power increases with 1 because
it must cope with higher attenuations to guarantee connectivity.
Conversely, for large values of 7, the optimal power decreases
with 7 because, in such a case, it is more beneficial to limit



34

35 4 a5 8 85 &

[
[
i
(=}

Fig. 13. Optimal per node transmit power versus 7.

the number of links, until the minimum power guaranteeing the
connectivity constraint is reached.

C. Random Topologies versus Uniformly Spaced Grids

Finally, it is interesting to compare the energy consumption
achievable with a random geometric graph and a deterministic
grid. In the deterministic case, we may also distinguish between
a graph with nodes scattered arbitrarily in a given area, but with
positions known, and a regular uniform grid, where the points
are located over a rectangular grid.

1) Eigenvalues of a Planar Uniform Grid: We start by de-
riving the algebraic connectivity of a square grid whose n nodes
are uniformly spaced within a unit square, at a distance § =
1/nq = 1/+/n. To avoid undesired border effects, we consider
the wrapping of the unit square in order to form a toroidal sur-
face. Each node is assumed to have a link with the neighboring
nodes only if they are at a distance less than a coverage radius
r(p), that depends on the transmit power p, as with geometric
graphs. In Appendix A, we derive a closed form expression for
the network degree and for the algebraic connectivity [see, e.g.,
(45)-(48)].

A numerical check of our derivations is reported in Fig. 14,
where we show the numerical value of Ay (L), obtained through
the eigendecomposition of L, and the value given in (48), for dif-
ferent values of . From Fig. 14, we can see a perfect agreement
between our closed form expression and the numerical results.
Notice, in particular, the sharp transition behavior: the eigen-
values tend to n or 0 depending on whether the transmit power
is above or below a threshold; further, the threshold increases
with 7.

In Fig. 15, we compare the algebraic connectivity of the rect-
angular grid, given by (48), with the theoretical value obtained
for the random geometric graph, given in (30), assuming the
same node density, over the same toroidal surface. As shown in
previous works, see, e.g., [4], RGGs tend to behave asymptoti-
cally as a regular graph. The result shown in Fig. 15 is a further

4o b

Fig. 14. Network algebraic connectivity versus per node transmit power for
several values of the path loss coefficient.

Fig. 15. Algebraic connectivity of random geometric graph and rectangular
grid versus transmission radius.

confirmation of this property. In the same figure, we also re-
port simulation results for the algebraic connectivity, obtained
by averaging over 100 independent realizations of a RGG. We
can check, once again, the good agreement between theory and
simulation.

Finally, in Fig. 16 we compare the energy consumption ob-
tained assuming full a priori knowledge of the nodes’ locations
or no knowledge at all. In the first case, the topology and the
power allocation over each link are optimized according to the
method illustrated in Section IV. The optimal values, for each
7, are indicated by colored dots. In the second case, we report
(solid line) the energy consumption versus the average power,
assuming that all nodes transmit with the same power (since they
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Fig. 16. Average network energy consumption versus average network power.

do not have any prior information about the other nodes posi-
tions). To make a fair comparison between the two cases, we
consider in both cases the sum of the powers associated with
each active link. This means that, in the second case, the energy
consumption is measured, for every common transmit power p,

Py mnip)
as&(p) = E/\;‘T’ where n;(p) denotes the number of neigh-
bors of node 2. The results shown in Fig. 16 have been obtained
by averaging the results obtained in the two settings over the
same set of 100 independent random deployments of n = 30
nodes, uniformly distributed over the unit square.

From Fig. 16 we can see that, as expected, the method as-
suming perfect a priori knowledge of the node positions (in the
figure denoted as £(p*)) is indeed able to achieve better per-
formance than the other method (€(p)), as it is able to take ad-
vantage of the a priori knowledge. The optimal average power
is the result of a tradeoff between transmit power and conver-
gence time, and always depends on the path loss exponent.

VI. CONCLUSION

In this paper we have addressed the problem of finding the
network topology that minimizes the energy consumption nec-
essary to achieve consensus in a WSN. Assuming a simple flat
fading propagation model, we have studied two main network
models: 1) arbitrary networks, where the nodes are arbitrarily lo-
cated, but with known positions, and 2) a random model, where
the positions are not known a priori, but are modeled as random
variables. In the first case, we have shown how to optimize the
network topology and the power allocated to each active link
in order to minimize the total energy necessary to achieve con-
sensus within a prescribed accuracy. Topology optimization is,
in general, a combinatorial problem and hence computationally
demanding. To simplify the solution, we introduced a relaxation
step that enabled us to reformulate the energy minimization
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problem as a convex-concave fractional program. This alterna-
tive formulation can be cast as an equivalent parametric convex
problem, which enables efficient solutions. The link weights re-
sulting from the solution of the convex problem must then be
thresholded to find out the network topology. We have shown
through numerical results that the thresholding operation may
yield a considerable reduction of the number of active links, yet
with very limited effect on performance.

In our deterministic setting, we assumed point-to-point links
and we optimized the power over each link. In practice, a con-
sensus algorithm running over a wireless network could ben-
efit from the broadcast channel. Deciding between broadcast or
one-to-one links entails a proper choice of the medium access
strategy, to establish in which time slot each node has to listen
to which broadcaster.

Conversely, in the random network case, lacking any infor-
mation about the internode distances, we assumed a broadcast
communication strategy. In such a case, the network topology
is modeled as a random geometric graph. We have derived
closed form expressions, albeit valid only asymptotically, for
the algebraic connectivity, assuming a common transmit power.
Then, building on these expressions, we have shown that the
energy consumption is a convex function of the coverage radius.
We have also shown that a random geometric graph performs,
asymptotically, as a regular graph built over a rectangular grid.
This confirms previous results, although now in the context of
energy minimization over consensus networks.

Finally, we have compared the performance achievable with
arbitrary and random graphs. Clearly, the knowledge of the
node locations allows better power allocation, that translates
into lower energy consumption to achieve consensus. However,
in practice there is a price associated with the knowledge of
node location. This knowledge requires the acquisition of
the node positions first and then a centralized optimization.
Conversely, the random approach can be followed also in a
decentralized fashion, with only minimal information about
some global parameters like number of nodes and area covered
by the network, and it does not need any extra hardware or
computation to acquire the nodes’ locations.

In this paper, we have assumed a simple flat fading channel
model, whose effect is only to introduce attenuation and su-
perimpose noise. The simple model captures the essence of the
problem and keeps the overall problem complexity under con-
trol. However, looking at potential applications, it would be
interesting to generalize the approach to the case where the
channel model is more complicated. Furthermore, the network
topology has been assumed to be static. However, a dynamic
topology, possibly adapted to the consensus state, might pro-
vide better performance.

APPENDIX A

In this section, we derive an analytical expression for the
eigenvalues of the adjacency matrix A of a rectangular grid over
a unit torus, as a function of the coverage radius r(p). We as-
sume, for simplicity that the number of nodes n is a square
number, i.e., n = n%, with n; integer. We number the rows of
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the grid, 1 to n1, going from bottom to top. The n x n matrix A
can be expressed in a cyclic block form, as

AO Al A2 Anl —2 Anl —1
An1—1 AU Al An1—3 An1—2
A — An1—2 An1—1 AO An1—4 An1—3
A A, As Anlfl Ay
where each block A;, f